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ABSTRACT
Designing medium access control protocols for underwater
acoustic sensor networks (UW-ASNs) is a major challenge
because of the spatial and temporal interference uncertainty
caused by asynchronous transmissions and by the low prop-
agation speed of sound, respectively. To deal with this un-
certainty, this paper proposes a queue-aware distributed ac-
cess scheme, in which each transmitter optimizes a transmis-
sion probability profile based on which it decides whether
to transmit or to enqueue its packets over a series of time
slots based on a statistical characterization of interference
obtained through its past observations. To model the ef-
fect of unaligned interference, we propose a so-called L-
measurement method, where interference is measured at mul-
tiple instants of time in each time slot to capture the effects
of temporal uncertainty.

We present a mathematical formulation of the problem of
dynamic transmission strategy optimization and propose an
iterative distributed solution algorithm designed based on
a best-response strategy. At each iteration, each node in-
dividually solves a nonconvex optimization problem of log-
arithmic complexity with the number of time slots jointly
considered. The performance of the proposed distributed
solution algorithm is evaluated by comparing it to two al-
ternative distributed schemes and to the global optimum
obtained through a newly-developed centralized globally op-
timal solution algorithm. Results indicate that considerable
improvement in terms of sum-throughput can be achieved
by the proposed distributed algorithm by jointly taking the
queueing and multi-slot optimization into consideration.

Keywords
Distributed MAC, underwater acoustic sensor networks (UW-
ASNs), spatial and temporal interference uncertainty.
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1. INTRODUCTION
A major challenge in Underwater Acoustic Sensor Net-

works (UW-ASNs)1 [1,2] is to design medium access control
(MAC) schemes, mainly because of the large propagation
delay caused by the low speed of sound in the underwater
environment [3]. In addition to the temporal uncertainty
of interference caused by the asynchronous transmissions of
different nodes and the time-varying wireless channels, in
UW-ASNs the large (linearly dependent on distance) prop-
agation delay of acoustic signals generates spatial uncer-
tainty, i.e., it is hard to predict the current value of in-
terference because acoustic signals simultaneously transmit-
ted by different nodes located at different distances from
an intended receiver do not necessarily reach the receiver
at the same time. As a result, in presence of both tempo-
ral and spatial uncertainties, MAC protocols originally de-
signed for radio-frequency (RF) in-air wireless communica-
tions cannot be applied in UW-ASNs directly. For example,
it was shown that the benefits of synchronization of slotted
ALOHA are completely lost in underwater environments due
to the distance-dependent delay [4].

Second, the large propagation delay makes it hard for
transmitters to adapt to the time-varying underwater chan-
nels because of the absence of instantaneous channel state
information (CSI), which is usually obtained through feed-
back from the receiver. Therefore, the large propagation
delay imposes great challenges on underwater communica-
tions at both the transmitter and receiver side.

Significant recent efforts have attempted to address these
formidable challenges [4–8]. For example, it was shown in [4]
that for slotted transmission the packet collision probability
can be reduced by adding a guard band to each time slot
to limit the negative effect of the spatial uncertainty of in-
terference2. In [5, 6], different MAC schemes were proposed
to achieve interference avoidance based on handshaking and
acknowledge schemes, while the resulting hidden terminal
problems were studied in [7]. Since these protocols mainly
rely on guard bands or handshaking, which still suffer from

1This work is based on material supported in part by the Na-
tional Science Foundation under grants CNS-1055945 and CNS-
1126357. Zhangyu Guan’s work is supported in part by the NSFC
under grant 61101120 and Doctoral Fund of Ministry of Educa-
tion of China under grant 20110131120028.
2A user transmitting in a given time slot might interfere with
others in two consecutive time slots.



the low-speed of sound in signaling exchanges, they might
result in under-utilization of spectrum and time and there-
fore in low throughput.

While the above MAC protocols mostly attempt to mit-
igate the negative effect of the spatial uncertainty of in-
terference, Chitre et al. pointed out in [8] that the large
and distance-dependent propagation delay can be exploited
through interference alignment (IA) in the time domain to
achieve a throughput much higher than that without spa-
tial uncertainty. Specifically, in [8] the coexisting nodes
were scheduled in a centralized way such that interfering sig-
nals reach a given node only when the node is transmitting,
i.e., interference is temporally aligned within the transmis-
sion duration. By doing so, each node is able to enjoy an
interference-free communication environment, which results
in higher throughput. However, the IA scheme in [8] largely
relies on exact knowledge of global location information of
all nodes and on centralized control, which is not easy to
implement in practice due to high communication overhead
required to collect exact location information and to broad-
cast schedules.

Moreover, none of the above discussed MAC protocols
[4–8] has taken the temporal uncertainty of interference into
consideration. First, they are basically designed based on
the so-called unit-disk graph interference model, i.e., there
is destructive interference between two nodes within trans-
mission range of one another and a packet is lost whenever
a collision occurs. While the model is helpful in simplifying
protocol design, it cannot fully capture the statistical behav-
ior of time-varying wireless channels. Moreover, previous
work has not considered the asynchronous transmission be-
havior of each node; and does not account for the stochastic
nature of random traffic arrivals.

This paper takes an initial step in this direction by study-
ing an optimized distributed access scheme based on explicit
stochastic modeling of the temporal and spatial uncertainty
of interference. With spatial uncertainty caused by the low-
speed of sound, interference observed at an intended receiver
at a specific time slot may be caused by interfering trans-
missions originated in past time slots. This motivates us
to develop an access scheme in which each transmitter dy-
namically optimizes a transmission probability profile based
on which it decides whether to transmit or to enqueue its
packets over a series of time slots based on a statistical char-
acterization of interference obtained through its past obser-
vations. Moreover, the originated interfering signals might
reach the receiver at different instants during a specific time
slot. Therefore, it is insufficient to characterize interference
using a single interference level for the whole time slot. In
this paper, we propose an L-measurement method, which
measures interference at multiple time points for each re-
ceiver in each time slot. At each measurement point, the
effects of temporal uncertainty of interference, i.e., the asyn-
chronous transmission times of different nodes or the time-
varying channels, on the interference level at each measure-
ment point are modeled using Gamma distribution func-
tions.

Then, based on this statistical characterization of inter-
ference, each node is able to adapt its transmission strategy
proactively to the time-varying interference to minimize the
resulting packet loss rate. On one hand, it is desirable for
a node to transmit with high probability only in time slots
when the corresponding interference levels are expected to

be low, while with lower (or even zero) probability in time
slots with high interference. On the other hand, to reduce
the probability that a packet waits too long in the queue and
becomes useless when received at destination, a node should
transmit with high (even one) probability in all time slots.
Therefore, by regulating the transmission probability, each
transmitter should find the optimal operating point along
the tradeoff between transmission and queueing to minimize
its packet loss rate (and therefore to maximize the expected
throughput).

We present a mathematical formulation of the problem of
dynamic transmission strategy optimization and propose an
iterative distributed solution algorithm designed based on a
best-response strategy. At each iteration, each node individ-
ually solves a nonconvex optimization problem, in which the
objective function can be transformed into a quasi-convex
function so that the global optimum can be efficiently com-
puted in time logarithmic with the number of time slots
jointly considered. Then, the performance of the proposed
distributed solution algorithm is evaluated by comparing it
to the global optimum obtained by a newly-developed cen-
tralized solution algorithm.

The core novelty of the paper lies in the formulation and
analysis of the distributed MAC scheme that jointly consid-
ering the temporal and spatial uncertainty of interference in
UW-ASNs, including two contributions: i) propose the first
interference model, L-measurement method, that handles
the low-speed of sound and time-varying wireless underwater
channels; ii) optimize the transmission strategy of each node
based on the statistical characterization of interference while
jointly considering the queueing behavior. It is worth point-
ing out that, since the proposed distributed MAC protocol
handles the low-speed of sound in the time domain directly,
its performance can be further enhanced by integrating it
with MAC protocols designed based on code-division mul-
tiple access (CDMA) [9–11] and frequency-division multiple
access (FDMA) [7] techniques, or by taking the routing into
consideration in a cross-layer framework [12].

The rest of the paper is organized as follows. In Section 2
we present the system model. In Section 3 we describe the
distributed solution algorithm and In Section 4 we present
the globally optimal solution algorithm. In Section 5 we
evaluate the proposed algorithm through simulation results,
and finally we draw conclusions in Section 6.

Notation: E[ν] and D[ν] represent the expectation and
variance of random variable ν, respectively. P[A] represents
the probability that event A occurs. |N | represents the car-
dinality of set N . �a� represents the maximum integer that
is smaller than or equal to a.

2. SYSTEM MODEL
We consider a underwater acoustic sensor network con-

sisting of a set N of transmitter-receiver pairs that share
a given portion of the acoustic spectrum. As shown in
Fig. 1, each pair (Ti, Ri), i ∈ N , consists of a transmitter i
and its intended receiver, denoted as receiver i accordingly.
The transmission time is divided into consecutive time slots,
which are further grouped into consecutive frames each com-
posed of a set T of time slots with |T | = T . Each transmit-
ter i ∈ N decides its transmission strategy for each time slot
in a frame while using the same strategy for all frames. In
the t-th time slot of a frame, transmitter i either transmits a
packet with probability ωt

i with 0 ≤ ωt
i ≤ 1, ∀i ∈ N , ∀t ∈ T ,
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Figure 1: System model for underwater acoustic sensor

networks.

or it stays silent with probability 1 − ωt
i and enqueues its

incoming packets in its buffer. We denote the transmis-
sion strategy vector as ωi = (ωt

i)t∈T for user i ∈ N and
ω = (ωi)i∈N for all users.

A packet from user i ∈ N may be lost either because of a
transmission error or because it exceeds the maximum play-
out deadline. If we denote the corresponding packet loss
rates of user i ∈ N as P err

i (ω) and P dly
i (ωi), respectively,

then the overall packet loss rate of user i denoted as P los
i (ω)

can be represented as

P los
i (ω) = P err

i (ω) + P dly
i (ωi) − P err

i (ω)P dly
i (ωi). (1)

Next, we derive an explicit expression for P los
i (ω) by de-

scribing the channel model, interference model and queueing
model in sequence.

Channel model. Denote hij as the channel gain from
transmitter i to receiver j, then hij can be represented as

hij = Hijρ
2, (2)

where ρ2 represents the fading coefficient, and Hij represents
the transmission loss that a narrow-band-acoustic signal ex-
periences over a given spectrum and can be described using
the Urick propagation model as [13],

Hij = d2
ij · 10(α·dij+A)/10, (3)

where α [dB/m] represents the medium absorption coeffi-
cient, A [dB] is the so-called transmission anomaly account-
ing for the degradation of the acoustic intensity caused by
multiple path propagation, refraction, diffraction, and scat-
tering of sound, and dij [m] represents the distance between
transmitted i to receiver j.3

The channel model in (2) is applicable to both shallow
and deep water environments. We focus on the former case,
where the acoustic channel is usually heavily affected by
multipath. We therefore assume that the number of rays
goes to infinity and therefore consider a worst-case scenario;
then, we have A ∈ [5, 10] and the fading coefficient ρ can
be modeled using a unit-mean Rayleigh distributed random
variable with following cumulative distribution function

P[ρ ≤ x] = 1 − exp(−πx2/4). (4)

3In rest of this paper, we simplify hij , Hij and dij as hi, Hi and
di if i = j.
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Figure 2: The received signal is sampled at three points

during a time slot. The signal at each sampling point

consists of information signal, noise and interfering sig-

nal. Information signal and noise keep the same for dif-

ferent sampling points.

The proposed distributed channel access scheme can also be
extended to the deep water case, where the acoustic channel
is not severely affected by multipath, and A and ρ2 can be
set to A ∈ [0, 5] and ρ2 = 1.

Interference model. Due to the distance-dependent
propagation delay caused by the low-speed sound, acous-
tic signals transmitted simultaneously by different devices
do not in general arrive at an intended receiver at the same
time. As a result, the interference received at a receiver is
nontrivially coupled with the transmission strategy ω, which
makes interference modeling rather challenging. To the best
of our knowledge, in the existing literatures there is no inter-
ference model that can characterize the statistical behavior
of interference in multiuser underwater networks.

To address this challenge, we propose an L-measurement
interference model, in which each receiver i ∈ N measures
the received signal at a set Lt

i of time points during the
t-th time slot4. Then, the measured interference forms a
vector, denoted as It

i = (Itl
i )l∈Lt

i
, where Itl

i represents the

l-th interference measurement. Figure 2 shows an example
of the L-measurement method with L = 3. Denote gtl

ij ,
with l ∈ Lt

i, as the time slot in which user j ∈ N/i causes
interference to user i at the l-th measurement point of the
t-th time slot. Then, the measured interference power can
be expressed as

Itl
i =

X
j∈N/i

Pjhijα(gtl
ij), (5)

where Pj [watt] represents the transmission power of user j,
and the indicator function α(gtl

ij) = 1 if user j transmits a

packet at the gtl
ij-th time slot while α(gtl

ij) = 0 otherwise.
With the channel model given in (2), (3) and (4), the

probability density function of Itl
i can be modeled through

a Gamma distribution function denoted as γtl
i (x),

P[Itl
i = x] = γtl

i (x) =
xktl

i (ω)e−x/θtl
i (ω)

Γ(ktl
i (ω))[θtl

i (ω)]k
tl
i (ω)

, (6)

where ktl
i (ω) and θtl

i (ω) are the shaping parameters which
can be estimated online as explained later in this paper.
Instead, Γ(ktl

i (ω)) can be represented as

Γ(ktl
i (ω)) =

Z ∞

0

xktl
i (ω)−1e−xdx. (7)

4The optimal number of measurements of interference in a time
slot needs to be determined through off-line measurement for a
given network or online learning. In this paper, we assume that
the number of measurements is known.
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Figure 3: Illustration of approximating the original

probability density function P[νi = k] using exponential

distribution function eP[νi = k].

Then, the cumulative distribution function of Itl
i , denoted

as ϑtl
i (x, ω), can be represented as

P[Itl
i ≤ x] = ϑtl

i (x, ω) =
ϕ

“
ktl

i (ω), x

θtl
i (ω)

”
Γ(ktl

i (ω))
, (8)

where ϕ
“
ktl

i (ω), x

θtl
i (ω)

”
is the incomplete gamma function

ϕ

„
ktl

i (ω),
x

θtl
i (ω)

«
=

Z x

θtl
i

(ω)

0

sktl
i (ω)−1e−sds, (9)

while Γ(ktl
i (ω)) is defined in (7).

If we use SINRtl
i to represent the signal-to-noise-plus-

interference ratio (SINR) at receiver i ∈ N at the l-th mea-
surement point in the t-th time slot, then SINRtl

i can be
represented as

SINRtl
i = Pihi/(Itl

i + Ni), (10)

where Ni represents the noise power at receiver i ∈ N . Let
SINRth denote the lowest SINR required by a receiver to
successfully decode a received packet and βtl

i (ω) represent
the packet decoding failure probability that occurs when
SINRtl

i < SINRth, then βtl
i (ω) can be represented as

P[SINRtl
i < SINRth] = βtl

i (ω)

=1 −
Z ∞

0

πx3

2
e−

πx2
4 ϑtl

i

„
PiHix

2

SINRth
− Ni, ω

«
dx. (11)

Let P err
i,t (ω) represent the packet error rate of user i ∈ N

in time slot t ∈ T and assume that a packet can be decoded
correctly only if the SINR levels at all the measurement
points are equal to or higher than the threshold SINRth.
Then, P err

i,t (ω) can be represented as

P err
i,t (ω) = 1 −

Y
l∈Lt

i

(1 − βtl
i (ω)), (12)

and the overall packet error rate of user i caused by trans-
mission error, denoted as P err

i (ω), can be represented as

P err
i (ω) =

1P
t∈T

ωt
i

X
t∈T

ωt
iP

err
i,t (ω). (13)

Queueing model. We let random variable νi represent
the number of consecutive time slots it takes for user i to
transmit a packet. Then, the probability density function
(PDF) of νi can be expressed as

P[νi = k] =

8>>>>><
>>>>>:

1
T

P
t∈T

ωt
i , k = 1,

1
T

P
t∈T

Q
g∈Tt

(1 − ωg
i )ωt

i , k ≤ T,„ Q
t∈T

(1 − ωt
i)

«k̂

P[νi = k̃], k > T,

(14)

where k̂ =
¨

k
T

˝
, k̃ = k − T · k̂, ωg

i represents the trans-
mission probability of the g-th time slot in a frame with Tt

representing the set of indices of the k − 1 consecutive time
slots before the t-th time slot, e.g., if k = 3 and each frame
consists of at least three time slots, i.e., T ≥ 3, then for
t = T we have Tt = {T − 1, T − 2}, and for t = 1 we have
Tt = {T, T − 1}.

From (14) we observe that the expression of P[νi = k] is
rather involved, which complicates theoretical analysis and
the development of practical, computationally feasible op-
timization schemes. To keep our analysis tractable, we ap-
proximate P[νi = k] in (14) through an exponential distri-
bution functioneP[νi = k] = φ(ωi)e

−φ(ωi)k, ∀i ∈ N , (15)

where the service rate parameter φ(ωi), which depends on
ωi, is set to the average service rate in a time slot according
to (14), i.e., φ(ωi) = 1

T

P
t∈T

ωt
i .

In Fig. 3, we present a comparison between P[νi = k] andeP[νi = k], where the number of time slots in a frame is set to
five and ten, respectively, i.e., T = 5, 10. In the legend, ωt

i ∈
[a, b] represents the case when the value of ωt

i is generated
randomly between a and b. We can see that the exponential-
function-based PDF provides a good approximation of the
original. Similar results can be observed for different values
of T .

We assume that the incoming packets generated at each
user i ∈ N follow a Poisson arrival process with average
packet arrival rate λi [packets/second]. Then, based on the
above discussion, the queue of each user i ∈ N can be mod-
eled using a M/M/1 model [14], and the packet loss rate
of user i caused by exceeding the maximum queueing delay,
denoted as T th

i [second], can be represented as

P dly
i (ωi) = e

−(
φ(ωi)
Tslt

−λi)T
th
i , (16)

where Tslt represents the time duration of a time slot in
second. Considering that P dly

i (ωi) ≤ 1, we have
P
t∈T

ωt
i ≥

λiTslt.
Expected throughput. Based on above formulations

and according to (1), the expected packet throughput of
user i ∈ N , denoted as Ri(ω), can be expressed as

Ri(ω) = λi

ˆ
1 − P dly

i (ωi) − P err
i (ω) + P dly

i (ωi)P
err
i (ω)

˜
,

(17)

and can be rewritten approximately by neglecting the second-
order item P dly

i (ωi)P
err
i (ω) as

Ri(ω) = λi

ˆ
1 − P dly

i (ωi) − P err
i (ω)

˜
. (18)

Then, the ideal objective of our problem would be to max-
imize the sum throughput of all users in N by adjusting the



transmission strategy ωi of each user i ∈ N . However, this
objective is clearly not achievable with distributed control.
Furthermore, the centralized optimization problem is not
convex, which means that, in general, only suboptimal solu-
tions can be computed in polynomial time even with central-
ized algorithms. With this understanding, we first propose
a low-complexity distributed solution algorithm, and then
present a centralized algorithm to compute the globally op-
timal solution to provide a benchmark for the performance
of the proposed distributed algorithm.

3. DISTRIBUTED PROBLEM FORMULA-
TION

Based on the system model developed in the previous sec-
tion, we now present a distributed problem formulation and
a low-complexity distributed algorithm. Then, we discuss
several issues related to the implementation of the algorithm.
The distributed solution algorithm is designed based on a
best-response strategy, i.e., each node iteratively, indepen-
dently and asynchronously solves the problem of dynamic
queueing and transmission in UW-ASNs. At each iteration,
each user individually maximizes its own expected through-
put based on the statistical characterization of the interfer-
ence obtained through past observations and based on its
queue information.

Distributed problem statement. We let ω−i = (ωj )j∈N/i

represent the transmission probability vector of all users in
N except i. Then, the expected throughput Ri(ω) in (18)
can be equivalently expressed as Ri(ωi, ω−i), i.e.,

Ri(ωi, ω−i) = λi

ˆ
1 − P dly

i (ωi) − P err
i (ωi, ω−i)

˜
, (19)

where P err
i (ωi, ω−i) is the corresponding equivalent repre-

sentation of P err
i (ω) given in (13). Then, at each iteration,

each user i ∈ N optimally chooses its transmission probabil-
ity vector ωi by solving the following optimization problem,

Given : Pi, di, Ni, ktl
i (ω−i),

θtl
i (ω−i), ∀t ∈ T , ∀l ∈ Lt

i (20)

Find : ωi

Maximize : Ri(ωi, ω−i) (21)

Subject to : 0 ≤ ωt
i ≤ 1, ∀t ∈ T (22)X

t∈T
ωt

i ≥ λiTslt (23)

where the objective function Ri(ωi, ω−i) in (21) is defined
through (13) and (16), ktl

i (ω−i) and θtl
i (ω−i) in (20) are the

shaping parameters in (6) depending on the transmission
strategies of all other users in N except i, i.e., ω−i.

Individual optimization. It is nontrivial for each user
i ∈ N to determine its own optimal transmission strategy
ωi, because the above optimization problem is in general
nonlinear and non-convex due to non-convexity of the ex-
pression in (13) (hence, it is difficult to solve to obtain the
optimal solution). In the following, we propose an efficient
algorithm to search for the globally optimal solution by tak-
ing advantage of the special structure of the objective func-
tion Ri(ωi, ω−i).

To maximize Ri(ωi, ω−i) in (21), each user i ∈ N only
needs to minimize its overall packet loss rate

P los
i (ω) = P dly

i (ωi) + P err
i (ω) (24)

Algorithm 1 Distributed Solution Algorithm

Input: Pi, di, Ni, for all i ∈ N , nmax, κ = 0.01
Initialize: Set iteration counter n = 0, ωi(n) = ω0

i , ∀i ∈
N

repeat
(S.1) Each user n ∈ N finds ω∗

i to maximize
Ri(ωi, ω−i) by searching for the optimal yi through
solving the optimization problem in (27)-(30).
(S.2) Set ωi(n) = ω∗

i for all i ∈ N .
(S.3) Set n ← n + 1.

until ||ωi(n) − ωi(n − 1)|| ≤ κ, ∀i ∈ N or n = nmax.

where P dly
i (ωi) and P err

i (ω) are defined in (16) and (13),
respectively. To this end, we introduce a new variable yi =P
t∈T

ωt
i . Then, by substituting yi into (16) and (13), P dly

i (ωi)

and P err
i (ω) can be respectively rewritten as

P dly
i (yi) = e

−(
yi

T ·Tslt
−λi)T

th
i , (25)

P err
i (yi, ω) =

1

yi

X
t∈T

ωt
iP

err
i,t (ω−i). (26)

Then, with given yi and P err
i,t (ω−i) (which can be calcu-

lated according to (5)-(12) for fixed ω−i; As explained later
in this section, the value of ω−i is actually unavailable to
transmitter i while the effects of ω−i on P err

i,t (ω−i) can only
be estimated online by measuring the statistical behavior of
interference caused by all interfering transmitters), P los

i (ω)
in (24) can be minimized by solving a simple linear opti-
mization problem. Denote the corresponding minimum as
min
ωi

P los
i (yi, ω−i, ωi), then the optimization problem formu-

lated in (20)-(23) can be equivalently expressed as

Given : Pi, di, Ni, ktl
i (ω−i),

θtl
i (ω−i), ∀t ∈ T , ∀l ∈ Lt

i (27)

Find : yi

Minimize : min
ωi

P los
i (yi, ω−i, ωi) (28)

Subject to : yi ≤ T (29)

yi ≥ λiTslt. (30)

It can be proven experimentally that the objective function
in (28), i.e., min

ωi

P los
i (yi, ω−i, ωi), is a quasi-convex function

of yi [15] for a wide set of network settings. This implies
that the globally optimal solution of yi can be iteratively
calculated in logarithmic time (which is less than polyno-
mial hence very efficient) by using the bisection method. At
each iteration, the optimal transmission probability vector
ωi with given yi can be obtained by simply solving a linear
optimization problem.

Implementation issues. The proposed distributed so-
lution algorithm is summarized in Algorithm 1. In the pro-
posed distributed access schemes, each node i ∈ N individ-
ually maximizes its own throughput with given ω−i. How-
ever, in a complete distributed algorithm, the transmission
strategy of interfering users are in general unavailable to user
i. For practical implementation, each user i only needs to
estimate the two shaping parameters ktl

i (ω−i) and θtl
i (ω−i)

based on the past measurements of the interference at the
receiver side.
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Figure 4: Approximation of interference using a Gamma

distribution function in shallow water environment.

To this end, we let E[Itl
i ] and D[Itl

i ] represent mean and
variance of Itl

i , respectively, then they can be derived as
follows,

E[Itl
i ] = E

» X
j∈N/i

Pjhijα(gtl
ij)

–
=

X
j∈N/i

Pjω
gtl

ij

j HijE[ρ2],

(31)

D[Itl
i ] = D

» X
j∈N/i

Phijα(gtl
ij)

–
=

X
j∈N/i

P 2
j ω

gtl
ij

j (Hij)
2D[ρ2]

(32)

where we have E[ρ2] = 4
π

and D[ρ2] = 16
π2 according to (4).

According to the probability density function of the inter-
ference Itl

i in (6), E[Itl
i ] and D[Itl

i ] can also be represented
as

E[Ifl
it ] = ktl

i (ω)θtl
i (ω), (33)

D[Ifl
it ] = ktl

i (ω)[θtl
i (ω)]2, (34)

where ktl
i (ω) and θtl

i (ω) are the two shaping parameters in
(6). Then, from (31)-(34), we have

θtl
i (ω) = D[Itl

i ]/E[Itl
i ], (35)

ktl
i (ω) = (E[Itl

i ])2/D[Itl
i ], (36)

where E[Itl
i ] and D[Itl

i ] are given in (31), (32), respectively.
In Fig. 4, we present an example to show validity of the

Gamma-function-based approximation of the aggregate in-
terference. We can see that he model can provide a very
good approximation the statistical characteristic of aggre-
gate interference. Note that in the case of network changes,
e.g., due to arriving or leaving of any nodes, both ktl

i (ω)
and θtl

i (ω) need to be re-estimated, which might result in
another round of transmission probability adaption through
Algorithm 1.

4. GLOBALLY OPTIMAL SOLUTION AL-
GORITHM

As discussed in Section 2, an ideal objective would be to
maximize the sum throughput of all users in the network.

The objective can not be achieved trivially due to lack of
centralized control and non-concavity of the utility function
Ri(ωi, ω−i) in (18). In this section, we propose a central-
ized but globally optimal solution algorithm based on the
branch and bound framework to solve the overall optimiza-
tion problem expressed as follows.

Given : P, dij , Ni, ∀i, j ∈ N (37)

Find : ω (38)

Maximize : R(ω) =
X
i∈N

Ri(ω) (39)

Subject to : 0 ≤ ωt
i ≤ 1, ∀t ∈ T , ∀i ∈ N (40)X

t∈T
ωt

i ≥ λiTslt, ∀i ∈ N (41)

Overview of the solution algorithm. The proposed
algorithm searches for a globally optimal solution with pre-
defined precision of optimality. If we denote the globally op-
timal sum-throughput objective function as R∗, 0 < ε ≤ 1 as
the optimality precision, then the algorithm searches for an
ε-optimal solution R, which satisfies R ≥ εR∗,with ε being
arbitrarily close to 1.

Denote Ω0 = {ω} as the original search space, includ-
ing all possible combinations of ω = (ωi)i∈N . The pro-
posed algorithm maintains a set of sub-domains Ω = {Ωn ⊂
Ω0, n = 1, 2, · · · }, where n represents the iteration step of
the algorithm. For any Ωn, consider UP(·) and LR(·) as the
upper and lower bounds on sum-throughput over Ωn. We
refer to UP(Ωn) and LR(Ωn) as the local upper bound and
local lower bound, respectively.

The branch and bound framework requires that, for given
Ωn, the UP(Ωn) and LR(Ωn) should be easy to calculate.
To determine UP(·), we rely on relaxation, i.e., we relax the
original nonlinear non-convex problem into a convex prob-
lem that is easy to solve to obtain the globally optimal so-
lution. For LR(·), we locally search for a feasible solution
starting from the relaxed solution (which is also a feasible
solution) and set the corresponding sum-throughput as the
local lower bound.

The proposed algorithm searches for the optimal solution
iteratively. At each iteration, the algorithm maintains a
global upper bound UPglb and a global lower bound LRglb

on the sum-throughput such that

LRglb ≤ R∗ ≤ UPglb. (42)

We use UPglb to drive the branch and bound technique
and use LRglb to check how close the obtained solution
is to R∗ and decide when to terminate the algorithm. If
LRglb ≥ ε · UPglb, the algorithm terminates and sets the
optimal sum-throughput to R = LRglb. Otherwise, the al-
gorithm chooses one sub-domain (which is obtained through
partitioning the original problem), and further partitions it
into two sub-domains and calculates UP(·) and LR(·) for
them each, and finally updates the UPglb and LRglb. As the
problem-partition progresses, the gap between UPglb and
LRglb converges to 0. Furthermore, from (42), UPglb and
LRglb converge to the globally maximal sum-throughput R∗.

In the next section, the globally optimal solution will be
calculated using the developed centralized algorithm to pro-
vide a benchmark for performance evaluation of the dis-
tributed solution proposed in the previous section.
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Figure 5: (a) Sum throughput achieved in the case of different number of time slots in each frame. (b)Sum throughput

achieved in the case of different users. (c) Sum throughput achieved in the case of different traffic loads.

5. SIMULATION RESULTS
In this section, we evaluate the performance of the pro-

posed distributed solution algorithm through simulations.
We consider an UW-ASN of ocean-bottom sensor nodes de-
ployed over an area of 1500 × 1500 m2. The number of
source-destination pairs is set to N = 2, 4, 6, 8, 10, with dis-
tance for each communicating pair randomly chosen between
[300, 500] m. The number of time slots in each frame is set
to vary from T = 1 to 9 with step of 2. For example, in the
case of T = 5, based on the proposed distributed algorithm,
each node optimizes its transmission probability jointly for
the next consecutive 5 time slots, while optimizes separately
for each individual time slot with T = 1. The number
of measurement points in each time slot is set to L = 5
for the L-measurement-based interference modeling method.
Three different schemes are used for performance evaluation
of the proposed distributed algorithm, called DST for short,
i.e., i) DST WoQ, which corresponds to the DST algorithm
without taking the packet loss rate due to exceeding the
maximum delay threshold into consideration in transmission
probability vector optimization, ii) DST Slt, which dynam-
ically adjusts the transmission strategy for each single time
slot, and iii) DST SM, which uses only one single measure-
ment point to represent the interference level for a whole
time slot. All results presented in this section are obtained
by averaging over 50 independent simulations.

The performance of the four algorithms is shown in Fig. 5 (a)
for the case of four source-destination pairs and different
number of time slots in each frame. We can see that, signif-
icant improvement in sum throughput can be achieved by
jointly optimizing the transmission strategy for a group of
time slots. For example, in the case of T = 5, 7, 9, i.e., when
the number of time slots jointly considered is larger than
that of the concurrent users (4 in this simulation), a sum-
throughput around 14 can be achieved by DST WoQ, which
is two times higher than the sum-throughput achieved by
DST Slt, which considers only a single time slot for trans-
mission strategy optimization. Further improvement can be
achieved by taking queueing into consideration, e.g., a value
of 25 sum-throughput can be achieved by DST, which is
three times higher that of DST Slt and more than 80% of
the global optimum.

In Fig. 5 (b), performance of the proposed distributed al-
gorithm is evaluated with user number N varying from 2 to
10 while the time slot number is set to 5. We can see that,

the proposed DST solution algorithm consistently outper-
forms the other two distributed algorithm. For example, in
the case of 4 users, a sum throughput of 25 can be achieved
by DST while only less than 15 and around 7 can be achieved
by DST WoQ and DST Slt, while in the case of 6 users, a
sum throughput of 17 can be achieved by DST which is
about three times higher than that achieved by DST WoQ
and DST Slt. It is worth pointing out that, unsurprisingly,
as the number of users increases, the price of anarchy caused
by the lack of a centralized controller can be very large, e.g.,
in the case of 10 users, only less than 10% of the global op-
timum can be achieved through distributed, uncoordinated
algorithms with no message exchange. A possible solution
method is to introduce partial cooperation among interfering
node, e.g., design distributed solution algorithms based on
pricing strategies [16]; this will be the subject of our future
work.

The performance of the proposed DST algorithm is eval-
uated in Fig. 5 (c) with 4 users, 5 time slots in a frame
and varying average incoming packet rates corresponding to
light, moderate and heavy traffic loads. We observe that a
sum-throughput close to the global optimum can be achieved
by the proposed DST algorithm in the former two cases,
while only 60% of the global optimum can be achieved in
the third case. Performance degradation of DST is due to
the fact that, with heavier traffic, each user prefers to trans-
mit more often to avoid high packet loss rates due to vio-
lating the delay constraint, which results in higher level of
interference in the UW-ASNs. Again, in this case, partial
cooperation among interfering users might be helpful for ef-
ficient MAC protocol design.

Advantages of the L-measurement-based interference mod-
eling method are illustrated in Fig. 6 through performance
comparison between DST and DST SM in the case of four
source-destination pairs, i.e., N = 4. Much higher through-
put can be achieved by the proposed DSM than DST SM
with the number of time slots larger than N . For exam-
ple, with T = 5, a sum throughput close to 25 can be
achieved by DST, which is over three times as high as the
sum-throughput of DST SM. By representing the interfer-
ence level in each time slot based on multiple measurement
points, the statistical behavior of interference with both spa-
tial and temporal uncertainty can be modeled more pre-
cisely, and hence each transmitter has more flexibility in op-
timally adapting its own probabilistic transmission strategy
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Figure 6: Comparison between the L-measurement

method and traditional single-measurement method.

profile to avoid interference from other transmitters.

6. CONCLUSIONS
We studied a stochastic, distributed and asynchronous

channel access scheme for underwater acoustic networks in
which each transmitter optimizes a transmission probability
profile based on which it decides whether to transmit or to
enqueue its packets over a series of time slots based on a
statistical characterization of interference obtained through
its past observations. To capture the effects of temporal
uncertainty of interference, we proposed an L-measurement
method to model the effect of unaligned interference at a
receiver.

We have presented a mathematical formulation of the
problem of dynamic transmission strategy optimization and
proposed an iterative distributed solution algorithm based
on a best-response strategy. The performance of the pro-
posed distributed access scheme was also evaluated through
simulations by comparing it to two alternative distributed
schemes. Results indicated that considerable improvement
in sum-throughput can be achieved by jointly taking the
queueing and multi-slot optimization into consideration.

By comparing the proposed distributed access scheme to
the global optimum, we found that while our scheme per-
forms very well in case of low or moderate interference, in
the case of high interference, e.g., with many concurrent
transmitting nodes or with high traffic loads, the price of
anarchy caused by the absence of centralized control can be
very large. We will explore partial cooperation strategies
among competing users to fill this performance gap. More-
over, it worth pointing out that, in this paper we have not
considered the effects of any advanced transmission tech-
nologies, e.g., channel coding, modulation and retransmis-
sion schemes, on the throughput performance and this will
be explored in our future research.
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