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The Value of Cooperation: Minimizing User
Costs in Multi-Broker Mobile Cloud
Computing Networks

Zhangyu Guan, Member, IEEE, and Tommaso Melodia, Member, IEEE

Abstract—We study the problem of user cost minimization in mobile cloud computing (MCC) networks. We consider a MCC model
where multiple brokers assign cloud resources to mobile users. The model is characterized by an heterogeneous cloud architecture
(which includes a public cloud and a cloudlet) and by the heterogeneous pricing strategies of cloud service providers. In this setting,
we investigate two classes of cloud reservation strategies, i.e., a competitive strategy, and a compete-then-cooperate strategy as a
performance bound. We first study a purely competitive scenario where brokers compete to reserve computing resources from remote
public clouds (which are affected by long delays) and from local cloudlets (which have limited computational resources but short
delays). We provide theoretical results demonstrating the existence of disagreement points (i.e., the equilibrium reservation strategy
that no broker has incentive to deviate unilaterally from) and convergence of the best-response strategies of the brokers to
disagreement points. We then consider the scenario in which brokers agree to cooperate in exchange for a lower average cost of
resources. We formulate a cooperative problem where the objective is to minimize the total average price of all brokers, under the
constraint that no broker should pay a price higher than the disagreement price (i.e., the competitive price). We design new globally
optimal solution algorithm to solve the resulting non-convex cooperative problem, based on a combination of the branch and bound
framework and of advanced convex relaxation techniques. The resulting optimal solution provides a lower bound on the achievable
user cost without complete collusion among brokers. Compared with pure competition, we found that (i) noticeable cooperative gains

can be achieved over pure competition in markets with a few brokers only, and (ii) the cooperative gain is only marginal in crowded
markets, i.e., with a high number of brokers, hence there is no clear incentive for brokers to cooperate.

Index Terms—Mobile cloud computing, heterogeneous cloud architecture, resource allocation, game theory

1 INTRODUCTION

MOBILE cloud computing (MCC) is emerging as a
technology with a potential to provide high-quality
and multimedia-rich services in mobile environments [1], [2].
Example applications include cloud-assisted video encoding,
multimedia rendering for interactive gaming, mobile health-
care, electronic commerce, and mobile learning [3]. Through
MCC technology, mobile devices can continuously offload
and run computationally-intensive tasks on “cloud” servers.
For example, “smart” phones, cameras, or glasses in need to
compress a captured video sequence may perform complex
motion-estimation or optimal rate allocation in the cloud.
This may enhance the capabilities of mobile devices, hence
potentially extending their battery lifetime. However, access-
ing cloud computational resources in future multimedia-rich
MCC networks may result in significant additional costs to
users [4]. Therefore, in this paper we focus on the problem of
cost minimization for mobile users in future MCC networks.
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Heterogeneity of cloud architectures. Two main challenges
have to be addressed, which are brought about by (i) the het-
erogeneity of the cloud architecture and (ii) the heterogeneity
of the pricing strategies of different cloud providers.

Future MCC networks will be based on highly heteroge-
neous architectures. As of today, multiple different cloud
architectures have been deployed or proposed to support
an emerging wide range of innovative cloud services. These
include so-called public clouds, cloudlets, and their combina-
tions. Public clouds, including Amazon EC2, Microsoft
Azure, and Apple iCloud are usually deployed and main-
tained by large organizations. While they provide comput-
ing services with high reliability, scalability, and elasticity,
their geographical deployment is typically sparse. For
example, Amazon EC2 deployed its data centers only in
eight major regions across the world (including US East, US
West, Asia Pacific, among others) [5]. Hence, the resulting
user-to-cloud delay can be potentially high, which is cer-
tainly undesirable for time-sensitive applications. The con-
cept of cloudlet has been then introduced to mitigate this
problem. Different from public clouds, cloudlets are typi-
cally resource-rich computers or clusters, and are operated
by much smaller organizations, like a campus or a coffee
shop, to provide computing services to only a few users at a
time [6]. Since cloudlets are usually deployed at the edge
of a wide area network (WAN), and hence close to the end
users, the user-to-cloudlet delay is typically negligible com-
pared to the public clouds. We envision that public clouds
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and cloudlets will coexist in emerging MCC networks.
To meet the increasing quality of experience (QoE) req-
uirements of end users, it is therefore necessary to study
tradeoffs between accessing the public cloud with high scal-
ability but potential longer delays, and accessing the cloud-
let with lower delay but limited availability of computing
resources.

Heterogeneity of pricing schemes. Second, users may be
charged in several different ways to access computing
resources. For example, users may access the public cloud
either based on long-term reservations or in an on-demand
fashion [5]. In long-term reservation, a user first pays a one-
time lump sum to reserve a certain amount of computing
resources for a period of one or several years. Then, it gets
charged extra for actually using the resource. While the
extra payment may be lower than in on-demand services, it
may not be desirable for each individual mobile user to pay
for the reservation if the computing task load is light or
moderate. Brokers have then been introduced to serve as an
intermediate entity in favor of efficient cloud reservation
[71, [8], [9]. Each broker reserves cloud resources for a set of
multiple mobile users by exploiting the statistical character-
istics of aggregate task flows. Then, the broker provides its
users with cloud services at a resulting lower price, and
schedules incoming computing tasks to the reserved clouds.
The pricing strategy of computing services can become
even more complex when cloudlets are incorporated into
MCC networks. Cloudlets are in fact equipped with lim-
ited-only computational resources. Therefore, when the
total computing requests exceed their capacity, sophisti-
cated resource allocation policies should be invoked.
Among these, dynamic-pricing-based policies such as auc-
tioning allocate more resources to consumers that are will-
ing to pay higher premiums for using resources [10], [11];
while fixed-pricing policies with dynamic admission control
ensure efficient allocation of computing resources of cloud-
lets and fairness among consumers[12]. As a consequence,
there is a need for each broker to optimize resource utiliza-
tion to minimize its average cost by choosing between (i)
reserving computing resources from the public cloud with
fixed prices and (ii) from the cloudlet with adaptive prices
while competing with other brokers. In MCC networks with
multiple brokers, cloud reservation strategies with both
architecture and pricing heterogeneities are, to the best of
our knowledge, unexplored.

In this paper, we consider a MCC network composed of a
public cloud, a cloudlet, and multiple brokers. Each broker
tries to minimize the average price for its users to use the
cloud services, by adjusting the amount of cloud resources
from the public cloud, the cloudlet bidding strategy,
and the task outsourcing strategy, while trying to meet
predefined QoE constraints for the users. Under this setting,
we study two classes of cloud reservation algorithms, pure
competition (PC) and compete-then-cooperate (CC). The main
contributions of the paper are as follows.

o We consider a more complex scenario than in previous
literature, where multiple brokers assign cloud
resources to mobile users. The model is character-
ized by an heterogeneous cloud architecture and by

the heterogeneous pricing strategies of cloud service
providers;

o  We study a purely competitive scenario where brokers
compete to reserve computing resources from
remote public clouds (which are affected by long
delays) and from local cloudlets (which have limited
computational resources but short delays). We pro-
vide theoretical results demonstrating the existence
of disagreement points (DP) (i.e., the equilibrium
reservation strategy that no broker has incentive to
deviate unilaterally from) and convergence of the
best-response strategies of the brokers to disagree-
ment points;

o  We study a cooperative scenario and formulate a prob-
lem where the objective is to minimize the total aver-
age price of all brokers, under the constraint that no
broker should pay a price higher than the disagree-
ment price (i.e., the competitive price);

o  We design new globally optimal solution algorithm to
solve the resulting non-convex cooperative problem,
based on a combination of the branch and bound
framework and of advanced convex relaxation techniques;

e We show that considerable cooperative gain can be
achieved over pure competition in markets with
only few brokers, and highlight the fact that the
cooperative gain is low in crowded markets, i.e.,
with a high number of brokers.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. In Section 3, we describe the
system model and problem formulation; In Section 4 we
present the disagreement analysis, and in Section 5 we pres-
ent the centralized optimization solution algorithm. We
present simulation results and analysis in Section 6, and
finally in Section 7 we draw some conclusions.

2 RELATED WORK

Cooperative resource allocation in cloud computing net-
works has recently attracted significant attention [7], [13],
[14], [15]. For example, in [7], Wu et al. investigate a queue-
ing-based video-on-Demand (VoD) systems and propose a
dynamic cloud resource provisioning algorithm that can
effectively support VoD streaming with low cloud utiliza-
tion cost. Similarly, in [8], Niu et al. investigate a pricing-
based bandwidth reservation scheme, and propose to use a
profit-making broker to control the performance risks by
multiplexing the bandwidth reservations of multiple VoD
providers. In [13], the authors propose a semi-Markov-
based decision making system for inter-domain service
transfer to balance the computation loads among multiple
cloud domains, with the objective of minimizing the num-
ber of service rejections that degrade the user satisfaction
level significantly. In [14], Niyato et al. focus on a multi-
organization cloud computing system, and study the prob-
lem of coalition formation considering the challenges of
virtual machine management. Different from these works,
where their primary focus is on homogeneous cloud pric-
ing strategies, in this paper we consider heterogeneous pric-
ing strategies.

Heterogeneous pricing strategies have also been studied
in existing works on cloud resource allocation. For example,
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Fig. 1. lllustration of the MCC network with public cloud and cloudlet.

in [16], Chaisiri et al. study the problem of cost minimiza-
tion for provisioning virtual servers in Amazon EC2 Cloud
systems. In [17], Wang et al. consider an EC2-like pricing
scheme with traditional pay-as-you-go pricing augmented
by an auction market, and study the arising optimal capac-
ity segmentation problem. In [18], Teng and Magoules pro-
poses a new resource pricing and allocation policy in which
users are enabled to predict the future resource price as
well as satisfy budget and deadline constraints. In addition
to heterogeneous pricing strategies, in this work we also
consider heterogeneous cloud architectures.

Recent literature has also focused on competition-based
resource allocation. In [19], Tsai and Tsai investigate a bid-
proportional auction scheme for resource allocation in
capacity-constrained clouds. In [20], the authors propose a
fully distributed VM-multiplexing resource allocation
scheme to manage decentralized resources, with the objec-
tive of maximizing the resource utilization using the pro-
portional share model (PSM) and delivering provably
optimal execution efficiency. While these contributions
focus on homogeneous pricing strategies, we study both
competitive and cooperative behaviors in MCC networks
with multiple brokers.

The main novel contribution of this paper lies therefore
in the formulation and analysis of multi-broker MCC net-
works with both heterogeneous cloud architectures and
pricing strategies. To the best of our knowledge, this is the
first work presenting theoretical results about competitive
and cooperative behaviors in MCC networks by jointly con-
sidering the hybrid architecture heterogeneity of the net-
work and the statistical traffic characteristics offered by
coexisting brokers.

3 SysTEm MODEL

We consider a MCC network that consists of (i) one public
cloud, (ii) one cloudlet, and (iii) a set M with |[M|= M of
brokers, as shown in Fig. 1. Mobile users generate computing
tasks, and offload and run the tasks to the cloud server
through the corresponding brokers. Each broker reserves
cloud resources from both the public cloud and the cloudlet,
and then offers the reserved resources to its users. The objec-
tive of each broker is to minimize the average payment of its users
while meeting the QoE constraints (expressed in terms of average
computation delay). In practical networks, brokers can be dedi-
cated and non-dedicated: dedicated brokers make revenue
by reserving cloud resources for a group of mobile users at a
lower price and then selling the reserved resources at a

higher price; non-dedicated brokers provide lower-price
cloud resources to its served users as a side benefit. An exam-
ple of non-dedicated brokers is the base stations operated by
the same or different mobile service providers (MSPs); the
MSPs have clear incentives to serve as brokers since by lower-
ing the average cost of using cloud resources mobile users
may become more likely to offload their computing tasks,
which will result in more data traffic hence higher revenue
for the MSPs. How to model the “willingness” of mobile
users to offload their tasks will be studied in our future work.
As a side comment, practical MCC networks may consist of
multiple public clouds and cloudlets, and even within one
public cloud, servers can be deployed in locations with differ-
ent network bandwidth. For analytical tractability, in this
paper we consider the model illustrated in Fig. 1. Future
extensions of our work will consider scenarios with multiple
cloudlets, multiple public clouds, and public cloud with het-
erogeneous network bandwidth (which may not be theoreti-
cally tractable). Next, we describe the cloud model and the
QoE model, respectively.

3.1 Cloud Pricing Model

According to different resource constraints of the public
cloud and of the cloudlet, several different pricing strategies
can be applied, e.g., long-term reservation, on-demand
request, and auction-based allocation. In this work, we
assume that long-term reservation and on-demand request
strategies are in place at the public cloud, while auction-
based allocation policies are implemented at the cloudlet
because of its potentially limited resources.'

Public cloud pricing. We consider as in [5], [17] a linear
cost model for the public cloud. Denote by p" and p° the
price of the cloud resources corresponding to long-term
reservation and on-demand request (as introduced in
Section 1), in terms of $/VH, i.e., the payment required to
use one virtual machine (VM) for one hour. Then, the one-
hour revenue of broker m € M for these two families of
cloud resources, denoted by c (vk) and P (vP), respec-
tively, can be represented as

ey, (o) = ploy, meM, 6)
P (WD) = pPul, me M, @)

where v¥ and v? are the number of virtual machines (VMs)

that broker m € M occupies in the long-term and on-
demand manners, respectively.

Cloudlet pricing. Different auction schemes can be applied
to obtain efficient resource allocation in the cloudlet, e.g.,
threshold-based policy [5], or bid proportion policy [18].
With the threshold-based policy, each user submits a bid-
ding price, and is charged with the threshold price set by
the cloud provider if the submitted price is higher than the
threshold, and is denied access to cloud resources other-
wise. Although this policy is adopted by some commercial

1. Cloudlets are usually operated by small organizations, like a cam-
pus or a coffee shop. While they usually provide free computing serv-
ices to their students or customers, other users may still need to pay to
use the cloud resources. Otherwise, if a cloudlet is completely freely
accessible, it may be congested by too many submitted computing
requests, causing the problem of “tragedy of the commons” [21].
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cloud providers, like Amazon EC2 [5], it results in very
complicated price model that is nonlinear and even non
continuous, and hence not tractable. We consider a propor-
tional policy, in which the portion of computing resources
allocated to bidders is proportional to their purchasing
price; it will be the subject of our future work to incorporate
alternative auctioning models (e.g., as in [5]) and fixed pric-
ing models with dynamic admission control (e.g., as in [12]).

Denote by p' = (p;),, the price vector of all brokers in
M. Then, the number of VMs allocated to broker m,
denoted by vl (p"), can be represented as

T

T/ T P
Um(p ) =V X=— "> Vme./\/l (3)
Zne/\/l p%‘
with
Py = Po, Ym € M, (4)

where v, represents the total number of VMs in the cloudlet,
and p, is the lowest price acceptable by the cloudlet. We
assume that a VM can be shared by multiple brokers, i.e.,
vl in (3) may take real values. Then, the one-hour payment
of broker m to the cloudlet, denoted by c! (p'), can be

m
expressed as
en(P") =Dty (P"), M EM. ®)

Finally, the total one-hour cost of broker m € M, denoted
by ¢,,(v2, p") can be expressed as®

en (") = € (vn) + e (vm) + e, (p), (©)

and the average cloud price, denoted by p,, for broker
m € M, is then
Cm(UB,aPT)

D T
m ) = . 7
p V(Um p ) ’U}n +UR +,U%(p"f) M

3.2 Quality of Experience Model

In addition to the average cost for occupying the cloud
resources, another important QoE metric is the average
delay between the time when a user submits a computing
request and the time when it gets back the computing result
from the cloud. To characterize the delay behavior of the
MCC network, we assume that computing tasks are gener-
ated, for all mobile users served by broker m € M, follow-
ing a Poisson process with mean A" . As in [22], we further
assume the computational complexity of each task to be
exponentially distributed with mean p,,, measured in num-
ber of CPU FLOPs.

Computing tasks can be served in different ways in each
cloud. In the case of no VM multiplexing, i.e., each VM
serves one task at a time, the cloud system can be modeled
as an M /M /k queue. In the case of full multiplexing, i.e.,
the task being served occupies all the computing resources
through parallel computing, the system can be approxi-
mately characterized using an M/M /1 queue if the intra-

2. We do not express ¢, as a function of v, since it is not easy for

brokers to change their long-term reservation strategies. Hence, v% is
considered to be fixed in the following analysis.

cloud delay to split a task among servers is negligible only.
Otherwise, M/M/1 can be extended to M/G/1 queue to
account for the non-negligible intra-cloud delay; in this case,
it can be hard to derive closed-form expressions for the aver-
age sojourn time (including waiting and service time) of
computing tasks because of generally distributed service
time (as indicated by G in M /G/1) [23]. In this work, we con-
sider the case without VM multiplexing as a lower-bound on
the system performance, while leaving the other case (and
their combinations) for future work. Furthermore, in order
to guarantee an acceptable level of QoE for a various set of
multimedia services, like photo or video editing [6], we limit
the average waiting time of tasks in each cloud to be at a low
level, implying a light-load queue at each cloud. Then, the
average sojourn time, denoted by T%, TV and 77 for the
long-term reserved cloud, on-demand requested cloud, and
the cloudlet, respectively, can be represented as [23]

v
) =" Ym e M, ®

Ho L ALY

M Umn Am

D(,D 4D vy

_ m

,Tm (Um7 Am) - ﬂ’UD AD ) Vm S Ma (9)
M~ m

v (P")
T (v, (7). 4y,) = L0 )T (pT) — AT

Hm m m

T"LL (vL Al

m? m

Vm e M, (10)

where AL, AP and AT represent the average task rate that
broker m € M outsources to the long-term reserved cloud,
on-demand requested cloud, and the cloudlet, respectively;
wo represents the number of CPU FLOPs available to each
VM per second. Then, we have
A+ AD + AL = A)

m?

VYm € M, (11)

and the average delay constraint can then be expressed as

T,7° + T" + Ty (v, Ay) < T, Vm e M, (12)
TP + T 4+ T) (v, AD) < Tp, ¥m € M, (13)
TP+ T+ T (v ("), AL) < T, Yme M, (14)

with TP as the average delay acceptable by users served by
broker m € M, and TV*8, TB2T and TP represent the aver-
age time to transmit a task from user to broker, from broker
to cloudlet, and from broker to public cloud, respectively.
Again, to highlight the effects of the cloud reservation strat-
egy on the QoE of mobile users, we consider 7225, T52T and

TB2P to be constant and known.

3.3 Problem Statement

From a global system perspective, an appealing design
objective is to find the allocation strategy for all MSPs that
minimizes the average cost of all users using the cloud ser-
vice, by cooperatively deciding the cloud reservation strate-
gies and task outsourcing strategies of all the brokers.
However, different brokers may be run by different organi-
zations, and may therefore be selfish and only willing to
minimize their individual prices. In other words, there is no
incentive for the brokers to cooperate if the resulting price is
not lower compared with that achievable through pure
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competition. We call the latter disagreement price or dis-
agreement point. Let pP¥ represent a disagreement point
price for broker m € M. Then, a possible precondition (alter-
native relaxed preconditions are discussed in Section 5.3) for

the brokers to cooperate can be expressed as

Pu(vps ") S oy, Ym € M. (15)
The “social” problem can then be formulated as’
e - L L
Given : pr, vk, A Ym e M
Find : pl ol AL AP AT Ym e M
1 1
Minimize : U = ™ Z P (v2, ") (16)

meM
subject to : (4),(11), (12), (13), (14), (15),

where U represents the average price of all brokers achiev-
able through cooperative cloud reservation, constraint (4)
defines the pricing strategy domain for all brokers, (11)-(14)
define the task outsourcing strategies, and (15) is the dis-
agreement price constraint used to ensure that the resulting
cost can be further lowered for all brokers compared with
that of pure competition.

In the following, we try to provide an answer to the fol-
lowing related questions: (i) Does such a disagreement price
exist for a given system setting? If it does, how can we deter-
mine it? (i) How much cooperative gain can be achieved,
i.e,, what is the value of cooperation? Is it necessary for
brokers to cooperate? Next, we investigate the two ques-
tions in Section 4 and Section 5, respectively.

4 DISAGREEMENT POINT ANALYSIS

Disagreement point is a notion from cooperative game the-
ory [24], representing the lowest utility for players (.e.,
brokers) involved in a cooperative game to have incentive
to cooperate. In a multi-entity market, a potential approach
to determine the DP is to rely on a pure competition strat-
egy. In this case, the resulting DP (if it exists) corresponds to
a Nash equilibrium (NE) of the competitive market [24].
Next, we first present a formal definition of DP, and then
study its existence and achievability.

Definition 1 (Disagreement Point). Denoting by p" =
(P e Jm the bidding price vector of all brokers in M except

m, the average price p,,(v2,p%) in (7) can be rewritten as
pm(V2,pL pT ) for each m € M. Then, p* 2 [p,((v2)",
(L), (PL,,) Ve is called a disagreement point if the
following conditions can be simultaneously satisfied for all
m e M:

()" (pp)) 2 argmin py (v, py, (p1,)7),  AD

(179] vp;[;/ JED,

with ®,, being the domain set of broker m defined through
constraints (4), (8)-(14).

3. The social problem can also be formulated as a weighted sum-
utility maximization problem, e.g., assign different weights to the
brokers by considering the number of end users served by each of
them. This does however not change essentially the following disagree-
ment point analysis in Section 4 and DP-constrained cost minimization
in Section 5.

4.1 Existence of DP
Assume that time-sharing among different brokers is
enabled in each cloud for occupying the computing resour-
ces, meaning that in each competition period, a broker is
allowed to reserve fractional number of VMs. Then, we
have following theorem:

Theorem 1. There exists at least one disagreement point (as in
Definition 1) for the problem formulated in (16).

Proof. Since we define the DP based on the pure competi-
tive market, the individual optimization problem for
each broker m € M can be written as

Given : pTW U%na A?n
Find : U, Al AD AT
S Bt e s
Minimize : pm(vm,PWILm)
subject to : (4), (11), (12), (13), (14).

Then, to prove the theorem, we only need to transform
the problem formulated in (18), and show that the theo-
rem holds true for the resulting equivalent problem.

The transformation is based on the observation from
(8)-(10) that, the sojourn time of tasks in each cloud is a
monotonically decreasing function with the number of
the available VMs. This implies that, when p,,(v2,pl
p',) in (18) is minimized, the equality holds for con-
straints (12), (13), (14). Then, we have

TE (W, ALYy = TO — 728 — 7B (19)
Th (v, AD) = To = Tp7P = T, (20)
T vy, (p"), AY) = TO, = T8 — 12T (21)

Then, together with (8), (9) and (10), we can express the
outsourcing task rate AL, AP and AT as a function of the

corresponding number of available VMs in each cloud,
as follows:

o 1
AL (V) = (M_:n - ﬁ) U (22)
1
Ap(vh) = (Z—O - ﬁ) U (23)
m m

0 1
A (p.pL,)) = (70 ——TT)vﬁ,@;,pém), (24)
m

m

with T%, TP and T defined in (19)-(21), respectively.
Further, for a given number of long-term reserved VMs
for each broker m € M and from constraint (11), we can

express the number of on-demand requested VMs as

A) — AL (ph,pL,) — AL (o)

D( T T

U Py P) = o 1 (25)
Hm Tan)

Then, we can represent the average price

pm(v2,pL pT ) in (7) as a function of only (pl,pt,)), as
follows:
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p7nvm+pm m(pm7p m)+pm m(pm7p m)
vL + vDr(pmﬁpfm) + UT (pm>p7m)

PP L) =

)

(26)

with o2 (pl . pT ) and v} (pl,pT, ) defined in (25) and (3),
respectively. Finally, the optimization problem (18) can
be transformed into the following problem:

Given : pT'm
Minimize :  py (py,pL,,), D
p,’,r,‘, €y,

where C/I\>m is the domain set of broker m € M defined
through constraint (4); the problem is convex as formal-
ized in Theorem 2, completing the proof according to the
existence results in [25, P39]. a

Theorem 2. The optimization problem (27) is a convex optimiza-
tion problem.

Proof. We first show that p,,(pL,pT, ) is either convex or
concave. For this purpose, we transform it as follows.

Denote ﬂ — TLL, /’L‘—O — T_D’ and 20 _ T_T in (22), (23) and (24)
as o, P and o, respectlvely. Then, the average cloud

price py, (pm,p_m) in (26) can be rewritten as

pn(pL.pE,) =

pmvm + pD [AU - ( T) - Aﬁz(v}n)] +p;zvgz(pT) (28)
T o T)_ AL (oL )
7}17‘;7, + Am Am (I;Pj A (v) + 'U% (pT)
which can be further rewritten as
T T (pm) + ﬂmpm + ym Zne/\/{/m p};
Pm (pm?pfm) = T ’ (29)
mpm + ¢m Zneﬁ/l/m by,
with
ot - )]
T [ mm m o D

IBm - v agl P, (30)
[Pk, + I (49, — 4L)]

Vi = 7 (31)

Vo
L
. OlT 'U + A — A
1/fm =1- % + v = s (32)
0 _ gL

U}n + A"; A?VI,

gL = " _am (33)

) I~

Finally, we can rewrite p,, (py,, p*,,) in the following form:

1 T
Pm (qunvam) = W_T |:p; 4 '32 . :Z_r; Z pg
m mneM/m

T 2 T (34)
(z_:lz Zne./\/l/m p;I]‘) + (y;gl - ﬂIL %71:1) Zne./\/l/m p;l: :|

+ Py
p;[;L + Tﬁi ZneM/m p;{

)

which is either convex or concave with respect to p! with
given p*, forany m € M.

It can be verified that, p,,(p}, pT,,) decreases with pl if
pl is close to zero, while increases when p] is sufficiently
large, and this implies the convexity of p,(pl,pT,,) with
respect to p.-. ad

4.2 Algorithm

Assuming a pure competitive market, we adopt a best-
response algorithm to iteratively achieve an approximation
of the disagreement point. A Jacobi version of the best-
response algorithm is given in Algorithm 1, where p,,(pl,
(pL,)) in (35) is given in (26). A convergence property of
the algorithm is given in Theorem 3 below.

Algorithm 1. Jacobi Best-response Algorithm

Data : (p7)’ € ®. Setx = 0.
(S.1) : If (pT)"* satisfies a suitable termination criterion: STOP;
(S.2) : Each broker m € M computes its best-response:

T)K+l

(P (35)

€ argmin P (py,, (p2,)")
[),Tn cd,,

(S.3) :k — k+1and go to (S.1).

Theorem 3 (Convergence of Algorithm 1). In the setting
described above, Algorithm 1 is quaranteed to converge to a
DP of the problem formulated in (16) if the number of brokers
is sufficiently large, i.e., with large | M.

Proof. We first obtain the first derivative of p,,(pL,p’,)
with respect to p;, as

apm(p;l;”p'fm) _ L

T - T
ap m m

2
Pm T ¢:lr-1 T
<V/rrr ZWEM/’" p”> (ym /3mw_”Tn) Z’HEM/W by,
1— ]
T ¢;1;’ T 2
Pm + ¢_;I;’ ZneM/m b,

)

(36)

with /3 l, yE, ¥l and ¢! defined in (30)-(33). Letting

31)m(11m P m — 0 we haVe
3pm !

2
qb_;[r‘z T T T ¢m
= o)+ vm-Buor) D
mpeM/m w neM/m
. ) 37
<m+ m Z p3>
mneM/m
T2 T
(ym—ﬂT¢ ) M-’—Qp;(b . (39
W,,L ZneM/m pn 1//m
When the number of brokers is large, we have
(ri)? + =~ 0. Then, we have
neM/m P,,
1 /¢t
Pn =3 ((ﬁyﬁ, - ﬂﬁ) (39)
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which implies that the best response of each broker
depends only on the network setting through g1, y%, v
and ¢!, and also implies the convergence of the best-

response algorithm. ]

The theorem provides a sufficient condition for
Algorithm 1 to converge to a DP. In practical MCC net-
works, the cloud price is usually much smaller than 1 in

$/VH [5], the item (pin)” or can be close to 0 with only a
neM/m*tmn
few brokers, e.g., 4 as shown in Fig. 7. In the case of fewer

(o)’ ;
= T, We can approxi-
neM/m Pn

mate the DP by averaging the resulting best-response bid-
ding prices over a larger number of iterations.

brokers, hence non-negligible

4.3 Implementation Issues

In each iteration of Algorithm 1, to minimize the cost
pm(pL,pt,,) defined in (26), each broker m € M needs to
gather the bidding information of all other brokers in
M/m, i.e., p', . From (3), (24), (25), and (26) we see that
pm(pL,pL,,) depends on the sum of p', only. This implies
that broker m does not need to gather the individual bid-
ding information of other brokers, and instead it just
needs to infer, according to the adopted cloudlet pricing
policy in (3), the sum p’ from (i) its own bidding price
and (ii) the amount of cloud resources that are eventually
assigned to it. Hence, the algorithm can be implemented
in a fully distributed manner that does not require shar-
ing of any information among brokers. Moreover, while
Algorithm 1 presents a Jacobi version of the best-response
algorithm, it can also be implemented in Gauss-Seidel
manner, and even in a fully asynchronous fashion [26]
with convergence guarantee in the setting discussed in
Theorem 3.

It is worth pointing out that additional factors can also
be incorporated into the cloudlet pricing strategies, e.g.,
by considering the heterogeneity of the workload of
brokers, or considering the mobility of end users and
their willingness to offload their computing tasks given a
pricing strategy; this however may result in quite differ-
ent (usually more complex) optimization problems, with
different expressions of (3), (24), (25), and (26). Moreover,
in those cases information sharing may be necessary to
attain a disagreement point among the brokers. Therefore,
it may also become essential to design schemes ensuring
trust and enforcing truthfulness, and to analyze the
effects of untruthfulness on each broker’s achievable util-
ity as well as existence and attainability of the disagree-
ment point. These will be topics of future research.

5 DP CONSTRAINED COST MINIMIZATION

After having derived the disagreement point in the previous
section, we now focus on the social problem formulated in
(16), i.e., minimizing the average price of all brokers while
guaranteeing that their individual price is not higher than
that corresponding to the disagreement point. By substitut-
ing the transformed average price (26) into (16), the social
problem can be rewritten as

OCTOBER-DECEMBER 2017

U(p)

up |

kW (LW | T

LW,

‘1‘1 ‘I"Q
‘I‘ﬂ

Fig. 2. lllustration of the globally optimal solution algorithm.

Given : p,Ln7 v}n, me M
1
Minimize : U = —— r
pTE\I’Z |M| ";Mpm(p ) 40)
subject to :  (4),(11),(12), (13), (14), (15),

where Y2 ] Cf)m denotes the joint domain set of all
brokers in M. Although the individual optimization prob-
lem discussed in the previous section is convex, the social
problem is nonlinear and nonconvex due to the coupled
bidding strategies when competing for the cloudlet resour-
ces. We therefore derive a non-heuristic globally optimal
solution algorithm.

5.1 Overview of the Solution Algorithm
The algorithm is designed based on a combination of the
branch and bound framework and of convex relaxation techniques
[27] to obtain a globally optimal solution with a predefined
optimality precision € € (0, 1] which can be arbitrarily close
to 1. Fig. 2 shows an illustration of the proposed algorithm.
Denoting the globally optimal objective function in (40) as
U*, then the objective of the algorithm is to iteratively search
for a U satisfying U < U*/e.

For this purpose, the algorithm iterates by maintaining a
global upper and global lower bounds on the objective func-
tion U in (40), denoted by UP,y, and LWy, respectively. Then,

LWa, <U* < UPygy,. 41)

In addition to this, the algorithm also maintains a set W of
sub-domains that is initialized to be ¥ = {¥y =V} with ¥
defined in (40). As the iterations proceed, the algorithm parti-
tions ¥, into a series of sub-domains V= {W¥; C ¥y,
i=1,2,...}. For each ¥;, the algorithm obtains a local upper
and lower bound on U over the domain (specific methods
are discussed later), denoted by UP(¥;) and LW (V¥;), and
updates the global upper and lower bounds as follows:

UPg]b = mln{UP(\Ifi)}: (42)

For example, the global bounds are updated to be UP,y, =
UP(Vy) and LWy, = LW (W), respectively, after the first
iteration, as shown in Fig. 2 with UP(W¥,) and LW (¥)
labeled as UF) and LWj; and then updated to UP; and LW,
respectively, after the second iteration.
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The iteration terminates if UPgy, < LW /€ and the algo-
rithm then sets the optimal objective U in (40) to U* = UPy;
and otherwise, the algorithm chooses one sub-domain from

V¥ and further partitions it into two sub-domains, calculates
UP(-) and LW(-), and updates the UP,y, and LW, as in (42)

and (43). In our algorithm, we select the ¥; € ¥ with the
lowest local upper bound, i.e., i = arg min; LW (¥;), and par-
titions the domain into two sub-domains by splitting the
bidding price variable p| that has the greatest range from its
middle. Based on the update criterion of UP,y, and LW, in
(42) and (43), the gap between the two global bounds con-
verges to 0 as the domain-partition progresses. Furthermore,
from (41), UP,y;, and LWy, converge to the globally maximal
objective function U*.

5.2 Local Lower and Upper Bounds
At each iteration, we rely on a convex relaxation technique
to obtain a local lower bound for the subproblem corre-
sponding to the selected sub-domain ¥;, and then obtain a
local upper bound through local search.

Convex relaxation. As shown in Section 4, the individual
utility function p,,,(pl,pT,,) in (26) can be written in the fol-
lowing form:

2 T
(p;EL) + ﬂmp;Ir‘L + y;l:L ZnEM/m p;l;

T T
pm(p s P_ ) = T T
" " wTILpEE‘l + ¢m EneM/m p;[L‘

. R ol _ W T (44)

_ h 1 + V’VI;L (b?;L m

T W:l:, . .

¢m Ep’rln + ZnEM/m p711
with g1, yI, ¢! and ¢! being constant coefficients defined

in Section 4. We notice from (44) that, p,(pl,p*,,) is a
monotonical function of }- v/, pr, implying that a lower

bound on p,,(pL, pT, ) can be obtained by setting all p! with
n € M/m either to their lower bounds over the current
domain set W;, or to the upper bounds, i.e. setting
pm(p;l;upzm) to pm(p;l;“ﬁzm) or pm(p%,ﬁin), with ﬁzm and
pL,, being the upper and lower bound of p%, over ¥,
respectively. In either case, the lower bound can be obtained
easily by solving a convex optimization of p. .

Local search. Let p}_ be the optimal bidding price vector
obtained by solving the relaxed optimization problem, and
denote p,;, as the corresponding real average price calcu-
lated based on the original utility function (26). Then, p,, is
feasible if each individual price is lower than or equal to the
disagreement point pP¥ for broker m € M, and infeasible
otherwise. In the latter case, the local upper bound is simply
set to infinity.

5.3 Remarks

Recall that in Section 3.3, we considered the precondition in
(15), i.e., the resulting cost through cooperation should not
be greater than the price at the disagreement point. The
precondition can also be relaxed by allowing collusion
among brokers, i.e., they bid the cloud resources with the
lowest cloudlet price py defined in (4), and then reallocate
the resources later to achieve the best cost efficiency. This,
however, may cause the cloudlet to invoke the self-

reservation protection [19]. Moreover, reallocating cloud
resources requires brokers to forward computing tasks on
behalf of each other if the cloudlet adopts strict resource
access control for security, e.g., a virtual machine assigned
to broker m can be accessed by that broker only. In real net-
works, it may not be easy to mutually forward computing
tasks that can be potentially of large size (e.g., video trans-
coding), e.g., due to possibly high forwarding delay, proto-
col inconsistence or content security restrictions, especially
if brokers are operated by different organizations. Finally,
even if complete collusion is enabled, a fairness policy is still
needed for reallocating resources among the brokers. Con-
straint (15) guarantees fairness in the sense that cooperating
does not result in higher cost than pure competition for
all brokers. In this work, we do not consider this kind of
collusion-based cooperation.

6 SIMULATION RESULTS

We evaluate the performance of the considered two classes
of algorithms, pure competition (PC) and compete-then-
cooperate (CC), and study the effects of different MCC net-
work settings. A software-based simulator was imple-
mented for both the competitive and the cooperative cloud
reservation algorithms. The number of brokers is set to
M| =2,4,...,14. The total offered task rate, denoted by
Ay, is uniformly distributed between [50 100], [150 200] and
[200 250], and uniformly distributed among the brokers in
each second. We consider an average delay threshold
T =2s, which represents the upper-bound delay for
acceptable QoE for a various set of applications [9], like
multimedia compression and rendering, and non-interac-
tive gaming, among others. A typical network setting is con-
sidered as follows. The average transmission delay is set to
TU?8 = 100ms for links from the mobile users to each bro-
ker, TB?T = 20 ms from each broker to the cloudlet, and var-
ied from 200 to 600 ms with step of 100 ms from each broker
to the public cloud. The average computing time of tasks is
set to ‘;—’(’;: 1 for each broker, the number of long-term

reserved VMs is set to 1.5 times of the average task incom-
ing rate, the total number of VMs available in the cloudlet is
set to vy = 50. The price of the on-demand pubic cloud is set
to 0.06%/VH corresponding to the default standard on-
demand Amazon EC2 service [5], and 0.03$/VH corre-
sponding to a reservation service with a two-year plan. The
price of the cloudlet is varied between [0.01 0.03]$/VH.

All figures (except for the case study) are plotted by aver-
aging over 50 independent simulation instances. In each
simulation, the maximum number of iterations is set to 10
for the pure competition algorithm (i.e., Algorithm 1) and to
1,000 for the cooperative algorithm. The optimality preci-
sion ¢ in the cooperative algorithm is set to 0.95.

Convergence. The iteration procedure of the pure competi-
tion and the compete-then-cooperate algorithms are plotted
in Figs. 3 and 4, respectively, by considering four brokers.
We can see from Fig. 3 that the pure competition algorithm
converges very fast, and from Fig. 4 that the predefined
optimality precision (0.95 in our simulations) is achieved in
around 700 iterations. Higher optimality precision can also
be achieved at the cost of increased computational
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Fig. 3. Convergence of pure competition algorithm.

complexity, while the optimality precision can be reduced
in favor of lower computational complexity in highly
dynamic mobile environment so that brokers are able to
update their cloud reservation quickly to adapt to the
time-varying computing traffic load. As shown in Fig. 5,
through 200 independent simulations, we found that an
optimality precision higher than the predefined can be
achieved in most cases (more than 90 percent of the tested
instances). The probability that a level of optimality above
the predefined threshold of 0.95 can be achieved through
1,000 iterations decreases with a higher number of
brokers, e.g., 8, 10, or 12. However, we found that this is
primarily because of the relaxation gap (introduced by
the convex relaxation in Section 5.2), while the resulting
feasible solution (obtained through local search) changes
only slightly as iterations proceed. Hence, the adopted
simulation setting is situated at a good tradeoff between
computational complexity and optimality precision.

Case study. First, we study a simple case with two brokers
to provide an intuitive understanding of the competitive
and cooperative behaviors of brokers. In Fig. 6, we plot the
price surfaces of the two brokers, from which the noncon-
vexity of the joint cloud reservation problem can be clearly
observed. At the disagreement point, the bidding price
that the two brokers submit to the cloudlet is 0.0339 and
0.0292, respectively, resulting in an average price of
0.0315. With cooperative reservation, the average price
reduces to 0.0288 with bidding price 0.0206 and 0.0212.
A price reduction ratio of 8.57 percent can be achieved,
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Fig. 4. Convergence of compete-then-cooperate algorithm.

0.97 rr
0.965 B
o - - - -- -
- - - - - - -~ - .- .
- - - ® - -
K - = = - - o " - - L e
AT R R N o Tk et DI
& .ty . e " .- .
= - - s -
£ .- - - s -
goosspe " - - .. . e s o
- . - - -
.o T - . T
- - - - -
095.----:---;-,..-------- U
© - - - - -
Predefined Optimality Precision - -
0.945 \. L L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Simulation Instance Index

Fig. 5. Optimality precision achievable by the compete-then-cooperate
algorithm.

with each broker’s average price not greater than in pure
competition. Several more examples are given in Table 1
with three brokers. We observe that price reduction can
be achieved in all the tested instances.

Average performance. The effects of the number of brokers
and of the traffic load are studied in Fig. 7. For comparison,
we include a homogeneous scenario as a bottom line perfor-
mance, where mobile users submit their computing tasks to
the public cloud directly. We observe that a heterogeneous
cloud architecture (i.e., with both public cloud and cloudlet)
results in much lower average price compared with a homo-
geneous architecture with public cloud only. As indicated
by the ellipses in Fig. 7, the price reduction achievable by
pure competition is up to 23 percent compared to homoge-
neous cloud reservation, and as the number of brokers
increases, the price reduction decreases, i.e., the price arises
as the demand for resources increases. We also observe that
the decreased speed in price reduction monotonically
diminishes with the number of brokers and tends to become
constant. For example, in the case of total offered task rate
Ap € [50 100], the price reduction stays around 21.9 percent
in a purely competitive market with more than 4 brokers.
This verifies our statement in Section 4, i.e., the disagree-
ment point price is independent of the number of brokers in
a crowded competitive market. Compete-then-cooperate
can achieve greater price reduction than pure competition,

0.045
0.04
0.035
0.03

0.025

Individual Average Price ($/VH)

0.05

0.04
g Price of Broker |

0.03
Biddin:

Fig. 6. Case study: Individual average price with two brokers.
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TABLE 1
Individual and Average Price Achievable by the PC and the
CC Algorithms, and Price Reduction with Three Brokers

# Individual Average Reduction
; PC 00419 00349 00442  0.0404 10.9%
CC 0.0398 0.0254 0.0431  0.0360 27
, PC 00407 00440 0.0412  0.0420 7 4%
CC 0.0367 0.0423 0.0376  0.0389 e
5 PC 00378 00441 00421  0.0413 8.6%
CC 0.0314 0.0426 0.0394  0.0389 e
4 PC 00424 00437 00401  0.0421 7 3%
CC 0.0396 0.0418 0.0356  0.0390 e
5 PC 00344 00434 00435  0.0404 10.9%
CC 0.0239 0.0420 0.0421  0.0360 27
¢ PC 00441 00385 00418  0.0415 8439
CC 0.0426 0.0326 0.0389  0.0380 e
- PC 00419 00442 00338  0.0400 11.7%
CC 0.0400 0.0433 0.0225  0.0353 e
g PC 00377 00408 00444  0.0410 9.0%
CC 0.0316 0.0371 0.0430 0.0373 e
g PC 00432 00427 00414  0.0424 6.8%
CC 0.0408 0.0401 0.0378  0.0395 o7
10 PC 00426 00404 00435  0.0422 7 1%
CC 0.0399 0.0362 0.0415  0.0392 e

ie., 30 percent with two brokers, and tends to 23.4 percent
with more than 8 brokers. Comparing pure competition and
compete-then-cooperate, we find that the benefits of cooper-
ation in terms of price reduction vary from 8 to 1.9 percent
as the number of brokers increases from 2 to 14. This means
that cooperating in cloud reservation is more beneficial
in less crowed markets, while the benefit is only marginal
if the market becomes crowded. Similar results can be
observed as the total offered task rate A, becomes higher.
For example, in case of A, between [200 250], the average
price changes only slightly in both the competitive and
cooperative cases. In this case, the price reduction through
cooperation is only very limited, less than 3 percent. There-
fore, from this experiment we conclude that a cooperative
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0.044 | —8— CC, 10 brokers S,
- © -PC, 2 brokers e
- B -PC, 10 brokers

0.042 -

Average Price ($/VH)

¢
0.028 :

02 025 0.3 0.35 0.4 0.45 0.5 0.55
Average delay from broker to public cloud (s)

(a)

12

........ (< IERERRRERRERRN! - EEERRRERN o O @
£ g nnz
=
k)

8 -
=1
g
=Y
o < + +
AT e @ ES
£ RPOT T *
g
<
# - Compete-Then-Cooperate (CC), Ay € {50 100}
++@ "+ Compete-Then-Cooperate (CC), 4y € {100 150}

O Compete-Then-Cooperate (CC), 4 € {200 250} H
—#— Pure Competition (PC), Ay € {50 100}
—8— Pure Competition (PC), Ay € {100 150}
—6— Pure Competition (PC), A, € {200 250}
—%— Homogencous

0.024 L L I I I
2 4 6 8 10 12 14

Number of Brokers

0.026[

Fig. 7. Average price with varying number of brokers for different total
offered task rates.

pricing scheme is only desirable in case of low number of
brokers with light traffic levels.

In Fig. 8, the effects of the average transmission delay
from the brokers to the public cloud on the competitive and
cooperative behaviors of the brokers are plotted for the case
of different number of brokers. Unsurprisingly, the average
price monotonically increases with the transmission delay,
since larger transmission delay results in lower waiting
delay and hence in a lower task rate acceptable by the public
cloud. As plotted in Fig. 8b, the corresponding price reduc-
tion varies between 2 and 3 percent in the case of 10 brokers
and 7.5 and 8.5 percent in the case of two brokers. That is to
say, the price reduction ratio is only slightly affected as the
transmission delay changes. This is because, while increas-
ing the transmission delay enforces the brokers to outsource
a larger portion of tasks to the on-demand requested cloud,
the task rate acceptable by the on-demand cloud also
decreases. From this experiment we conclude that cooperat-
ing gain may exist in a diverse set of networking settings
with respect to transmission delay, and the cooperating
gain is less affected by the transmission delay than the
number of brokers.
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Price Reduction (%)

2 I I I
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Average delay from broker to public cloud (s)

(b)

Fig. 8. (a) Average price and (b) price reduction with varying transmission delay between each broker and the public cloud for different number

of brokers.
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Fig. 9. (a)Average price and (b)price reduction with varying cloudlet threshold price for total offered task rate A, between [50 100].

Finally, we study the effects of the price threshold of the
cloudlet on the competitive and cooperative behaviors. In
Fig. 9a, we plot the average price achievable by the PC and
CC schemes, with 2 and 10 brokers, in the case of total
offered task rate Ay between [50 100]. In the two-broker
case, we find that the average price at the disagreement
point varies between [0.031 0.032] and is only slightly
affected by the threshold price, while it increases linearly
from 0.026 to 0.032 in the cooperative scheme. As shown in
Fig. 9b, the cooperation gain degrades from more than
17 percent to zero as the threshold price increases from 0.01
to 0.03. In the case of 10 brokers, a nearly constant price
reduction around 3 percent can be achieved in a wide
threshold price range. The corresponding results are plotted
in Fig. 10 for the case of higher total offered task rate A,
between [100 150]. We find that cooperation gain can be
achieved in a wider range of threshold price compared with
in Fig. 9. For example, the price reductions achievable by
PC and CC are 1.5 and 2.6 percent at cloudlet price thresh-
old 0.03 in Fig. 10, while almost no price reduction can be
achieved by PC or CC in Fig. 9. This is because the brokers
have stronger incentive to outsource more computing tasks
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to the low-delay cloudlet in the case of higher offered traffic
load level, which results in higher bidding price at disagree-
ment point in Fig. 10 compared to in Fig. 9a and hence pos-
sibly higher price reduction through cooperation. This
experiment indicates that, there is no need for brokers to
cooperate if the cloudlet threshold price becomes high and
there is only a low number of brokers, and in the case of
high cloudlet threshold price it is more desirable to cooper-
ate with more demands of computing resources, i.e., more
brokers and higher offered traffic load level.

7 CONCLUSIONS

We studied the problem of user cost minimization in MCC
networks by considering a multi-broker scenario with het-
erogeneity of the cloud architecture and of the pricing strat-
egies. We first studied a scenario in which brokers purely
compete, and demonstrated theoretically the existence
of disagreement points and convergence of the best
response strategies of individual brokers to disagreement
points. We then formulated a cooperative problem to mini-
mize the average price achievable by all brokers so that

10q
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Fig. 10. (a)Average price and (b)price reduction with varying cloudlet threshold price for total offered task rate A, between [100 150].
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no broker has a price higher than the disagreement point.
We obtained the globally optimal solution of the resulting
non-convex problem through a newly designed algorithm.
Through simulation results, we showed that considerable
cooperative gains over pure competition can be achieved in
markets with a few brokers only, and we highlighted the
fact that the cooperative gain is low when there is a high
number of brokers, i.e., the value of cooperation is marginal
in this case.
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