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Abstract—To mitigate the long-term spectrum crunch problem,
the FCC recently opened up the 6 GHz frequency band for
unlicensed use. However, the existing spectrum sharing strate-
gies cannot support the operation of access points in moving
vehicles such as cars and UAVs. This is primarily because of
the directionality-based spectrum sharing among the incumbent
systems in this band and the high mobility of the moving
vehicles, which together make it challenging to control the cross-
system interference. In this paper we propose SwarmShare, a
mobility-resilient spectrum sharing framework for swarm UAV
networking in the 6 GHz band. We first present a mathematical
formulation of the SwarmShare problem, where the objective is
to maximize the spectral efficiency of the UAV network by jointly
controlling the flight and transmission power of the UAVs and
their association with the ground users, under the interference
constraints of the incumbent system. We find that there are no
closed-form mathematical models that can be used characterize
the statistical behaviors of the aggregate interference from the
UAVs to the incumbent system. Then we propose a data-driven
three-phase spectrum sharing approach, including Initial Power
Enforcement, Offline-dataset Guided Online Power Adaptation, and
Reinforcement Learning-based UAV Optimization. We validate the
effectiveness of SwarmShare through an extensive simulation
campaign. Results indicate that, based on SwarmShare, the aggre-
gate interference from the UAVs to the incumbent system can be
effectively controlled below the target level without requiring the
real-time cross-system channel state information. The mobility
resilience of SwarmShare is also validated in coexisting networks
with no precise UAV location information.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been envisioned as a
key technology for next-generation (i.e., B5G or 6G) wireless
networks [1], [2]. Because of their features of fast deployment,
high mobility and small size, UAVs have a great potential to
enable a wide set of new applications, including UAV-aided
guidance, small cells with flying base stations, emergency
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wireless networking in the aftermath of disasters, among
others. The foreseen wide adoption of UAV systems can pose
a significant burden on the capacity of the underlying wireless
networks. In this paper we aim to explore new approaches that
can enable UAV operations in the 6 GHz band to harvest the
addtitional 1.2 GHz spectrum bandwidth [3].

The primary challenge towards this goal is in the spectrum
sharing approaches adopted by the incumbent systems in this
frequency band. The 6 GHz band consists of four sub-bands,
i.e., U-NII-5 (5.925-6.425 GHz), U-NII-6 (6.425-6.525 GHz),
U-NII-7 (6.525-6.875 GHz), and U-NII-8 (6.875-7.125 GHz).
These bands have been previously occupied by a set of non-
government services, including fixed point-to-point services,
fixed-satellite service (Earth-to-space), broadcast auxiliary ser-
vice and cable television relay service [4]. These incumbent
systems coexist with each other by sharing the spectrum on
a directional basis, i.e., they use highly directional antennas
to concentrate the signal energy in a particular direction such
that mutual interference can be effectively mitigated as long as
their antennas are not pointed toward each other. As a result,
traditional carrier-sensing-based spectrum sharing as in Wi-Fi
networks is non-applicable to extend those wireless systems
with omnidirectional antennas to this frequency band, because
of the low detectability of the incumbent systems. For this
reason, two operation modes have been proposed by the FCC,
i.e., standard-power and low-power modes. The former allows
both indoor and outdoor operations on the U-NII-5 and U-NII-
7 bands with maximum transmission power of 30 dBm. The
latter focuses on indoor operations in the U-NII-6 and U-NII-8
bands with maximum transmission power of 24 dBm.

However, none of the above two modes support UAV
operations in the 6 GHz bands [3], [5]. A major concern is
with the high mobility of the UAV systems, which makes it
difficult to model and control their aggregate interference to
the incumbent systems. The situation gets even worse when
considering the altitude-dependent interference range of UAVs
and the higher probability of line-of-sight signal propagation
at higher altitudes. Additionally, it is also challenging for
the distributed UAVs to control their aggregate interference
collaboratively by jointly considering their spectrum access

This paper has been accepted for publication on IEEE International Conference on Sensing, Communication and Networking (SECON) 2021



strategies and association to the ground users.
To address these challenges, a key step is to understand the

statistical behaviors and effects of the aggregate interference
experienced by the incumbent systems, since no real-time
cross-system channel state information (CSI) is available. To
this end, in this paper we focus on a new spectrum sharing
scenario in the 6 GHz band called SwarmShare, where a set
of UAVs collaboratively provide data streaming services to
ground users, by sharing the spectrum with the incumbent sys-
tems on the 6 GHz band under the cross-system interference
constraints. Within this framework, we model and analyze
the aggregate interference from the UAVs to the incumbent,
and propose a mobility-resilient stochastic spectrum sharing
approach. The main contributions of this work are as follows:
• We first present a mathematical formulation of the

SwarmShare problem, where the objective is to maximize
the spectral efficiency of the wireless UAV network
by jointly controlling the UAVs’ transmission power
and flight trajectory as well as their association to the
ground users, under the interference constraints of the
incumbent system. It is shown that the resulting problem
is a mixed integer nonlinear non-convex programming
(MINLP) problem.

• We analyze the statistical behavior of the aggregate
interference from the UAVs to the incumbent sys-
tem, and find that no existing models can be used to
characterize the statistical behavior of the interference.
With this observation, we propose to solve the above
MINLP spectrum sharing problem following a data-
driven three-phase approach: Initial Power Enforcement,
Offline-dataset Guided Online Power Adaptation, and
Reinforcement Learning-based UAV Optimization.

• We validate the effectiveness of SwarmShare by con-
ducting an extensive simulation campaign over UBSim,
a newly developed Universal Broadband Simulator for
integrated aerial-ground wireless networks. It is found
that, with SwarmShare, effective spectrum sharing can
be achieved without real-time cross-system channel state
information, and, which is somewhat surprising, even
with no precise location information of the UAVs.

The rest of the paper is organized as follows. In Section II,
we discuss the related works. The system model and problem
formulation is presented in Section III. In Section IV, we
describe the spectrum sharing framework. Performance eval-
uation results are discussed in Section V and finally we draw
the main conclusions in Section VI.

II. RELATED WORK

UAV systems have attracted significant research attention
in both academia and industry [1], [6]–[9]. For example, in
[1] the authors optimize the achievable rate of UAV-aided
cognitive IoT networks. Wang et al. propose in [6] a dynamic
hyper-graph coloring approach for spectrum sharing in UAV-
assisted networks. In [7], the authors optimize mobile termi-
nals’ throughput by jointly controlling UAV trajectory, band-
width allocation and user partitioning between the UAV and

ground base stations. In [8], UAV is used as relay to assist D2D
communications. [9] studies machine learning based spectrum
sharing for UAV-assisted emergency communications. Readers
are referred to [10], [11] and references therein for a survey
of the main results in this area.

Spectrum sharing in cognitive radio networks has also been
a hot research topic for a long time with a sizable and
increasing body of literature. In [12], the authors aim to
maintain network connectivity in cognitive radio networks by
controlling the transmission power of sensors. In [13], the
authors maximize the revenue of the newly joined systems in
cognitive radio networks by controlling the channel access of
new users. Zhang et al. maximize in [14] the spectral efficiency
in cognitive radio networks based on deep reinforcement
learning. Li et al. propose in [15] to accelerate model free
reinforcement learning based on imperfect model knowledge
in dynamic spectrum access networks. The authors of [16]
propose a cognitive backscatter network to maximize the data
rate of the newly joined networks.

Spectrum sharing between directional- and omnidirectional-
antenna wireless systems has also been studied in existing
literature. For example, [17] optimizes the performance of
LTE-Unlicensed networks while guaranteeing the performance
of the co-located radar system. The authors of [18] propose
RadChat, a distributed networking protocol for mitigation
of interference among frequency modulated continuous wave
radars. A cooperative spectrum sharing model is proposed in
[19] to mitigate the mutual interference among radar and com-
munication system. Please refer to [20], [21] and references
therein for a good survey of the main results in this field.

Different from the above discussed works, none of which
have considered the spectrum sharing between UAVs and the
incumbent wireless systems in the 6 GHz band, in this paper
we aim to design a new, mobility-resilient spectrum sharing
framework to enable wireless UAV networking in this band.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless UAV network coexisting with an
incumbent communication pair Tx and Rx by sharing the
same portion of spectrum B in the 6 GHz band. The UAV
network consists of a set K of UAVs collaborating with each
other to serve a set M of ground users. The transmission
time is divided into a set T of consecutive time slots. In
each time slot t ∈ T , denote the coordinate vector of UAV
k ∈ K as codt

k = [xtk, y
t
k, z

t
k]

T, with T being the transpose
operation and xtk, y

t
k and ztk representing the x-, y- and z-

axis components, respectively. Similarly, denote respectively
codTx = [xTx, yTx, zTx]

T, codRx = [xRx, yRx, zRx]
T and

codi = [xi, yi, zi]
T as the coordinate vectors of incumbent

transmitter Tx, incumbent receiver Rx and ground node i ∈
M∪{Tx,Rx}. Denote A = K∪M∪{Tx,Rx} as the set of all
the nodes in the heterogeneous network. The objective of the
UAV network is to maximize its own spectral efficiency under
the interference constraints of the incumbent system. Before
presenting the formal formulation of the spectrum sharing
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problem, we first describe the considered channel, antenna and
throughput models.

A. Channel Model

We consider both large-scale path-loss and small-scale fad-
ing. For path-loss, we consider line-of-sight (LoS) wireless
channels between the incumbent transmitter Tx and its receiver
Rx. This is feasible because the incumbent systems are usually
carefully deployed such that their antennas are well-aligned
without any obstructions in the link. However, we consider
non-line-of-sight (NLoS) links between the incumbent nodes
and the ground users of the coexisting networks. For UAV
network, we consider as in [22] a probabilistic path-loss model
for the links between UAVs and ground nodes. Then, the LoS
and NLoS path-loss (in dB) between UAV k ∈ K and ground
node i ∈M∪ {Tx,Rx} can be given as, in time slot t ∈ T ,

HLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηLoS, (1)

HNLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηNLoS, (2)

where the first item on the righ-hand side of (1) and (2)
represents the free space path-loss with dtki = ||cod

t
k−codi||2

being the distance between UAV k and receiver i in time slot
t, f is the carrier frequency of UAV k, c is the speed of light,
and ηLoS and ηNLoS are the additional attenuation factors due
to LoS and NLoS transmissions, respectively. Let Pr(HLoS,t

ki )
represent the probability of LoS transmissions in time slot t,
then Pr(HLoS,t

ki ) can be expressed as [23],

Pr(HLoS,t
ki ) = (1 +X exp (−Y [φki −X]))−1, (3)

where X and Y are given environment-dependent constants
and φki = sin−1(ztk/d

t
ki). Accordingly, the probability of

NLoS transmissions between UAV k ∈ K and receiver i ∈
M∪{Tx,Rx} can be given as Pr(HNLoS,t

ki ) = 1−Pr(HLoS,t
ki ).

Finally, for small-scale fading we consider Rician fading for
LoS transmissions and Rayleigh fading for NLoS. Denote Kij

as the Rician factor for the wireless channel between nodes
i, j ∈ A, then Kij can be given as Kij = 13−0.03dij for LoS
transmissions and 0 for NLoS [24], where dij is the distance
between the two nodes. Denote the resulting small-scale fading
coefficient as htij , htij(Kij) for nodes i, j ∈ A.

B. Antenna Model

As described in section I, in this work we consider direc-
tional transmissions for the incumbent wireless systems and
omnidirectional transmissions for the coexisting UAV network.
Specifically, we consider as in [25] bi-sectorized antenna
model to characterize the interference between directional
and omnidirectional antennas. Denote θTx and θRx as the
signal beamwidth of the incumbent transmitter and receiver’s
antennas, respectively. Let θm ∈ [−π, π] denote the offset
angle of the boresight direction of the Tx’s antenna with
respect to the reference direction for ground user m ∈ M.
Here, the reference direction refers to the direction along
which the Tx’s antenna would be exactly pointed to user

m. Then the antenna gain of incumbent transmitter Tx with
respect to ground user m ∈ M in time slot t, denoted as
wt

mTx, can be written as

wt
mTx =

{
wmax

Tx , if θm ≤ θTx

wmin
Tx , otherwise

, (4)

where wmax
Tx and wmin

Tx represent the maximum and minimum
transmit gains of the incumbent transmitter, respectively. Sim-
ilarly, the receive gain of the incumbent receiver Rx with
respect to UAV k ∈ K, denoted as wt

kRx, can be given as

wt
kRx =

{
wmax

Rx , if θk ≤ θnRx

wmin
Rx , otherwise

, (5)

with wmax
Rx and wmin

Rx being the maximum and minimum
receive gains of the incumbent receiver, respectively. The
transmit and receive gains are set to the maximum values for
incumbent transmissions, i.e., wmax

Tx and wmax
Rx , respectively.

C. Throughput Model
Based on the above channel and antenna models, the signal-

to-interference-plus-noise ratio (SINR) of the incumbent re-
ceiver Rx, denoted as γtRX for time slot t, can be written as

γtRX =
pTxw

max
Tx wmax

Rx · (htTxRx)
2/HLoS

TxRx∑
k∈K

ptkw
t
kRxwk · (htkRx)

2/Ht
kRx + (σRx)2

(6)

where pTx and ptk represent the transmission power of the
incumbent transmitter Tx and UAV k ∈ K in time slot t ∈ T ,
respectively; wk denotes the transmit gain of the UAV and
is considered to be constant for omnidirectional antennas;
and (σRx)

2 is the power of Additive White Gaussian Noise
(AWGN) at the incumbent receiver.

The objective of SwarmShare is to guarantee satisfactory
SINR for the incumbent system (i.e., γtRX above) by con-
trolling the transmission power of the coexisting UAVs. To
this end, we consider single-home association strategy for the
ground users of the UAV network, that is in each time slot
t ∈ T each ground user can be served by at most one UAV.
Denote αkm as the association variable, with αkm = 1 if
ground user m ∈ M is associated with UAV k ∈ K and
αkm = 0 otherwise. Then we have∑

k∈K

αt
km ≤ 1, ∀k ∈ K,m ∈M, t ∈ T (7)

αt
km ∈ {0, 1},∀k ∈ K,m ∈M, t ∈ T (8)

Denote Mt
k , {m|m ∈ M, αt

km = 1} as the set of ground
users served by UAV k in time slot t.

We further consider FDMA-based spectrum access among
the UAVs in K and TDMA for the ground users served by the
same UAV. Then, the SINR of ground user m ∈ M in time
slot t, denoted as γtm = γtm(Ht

mTx) can be expressed as

γtm =
ptk(m) · (h

t
k(m)m)2/Ht

k(m)m

(pTx/|K|) · wt
mTxŵm · (htmTx)

2/(Ht
mTx) + σ2

m

, (9)

where k(m) and ŵm represent the serving UAV and receive
gain of ground user m, respectively; |K| denotes the number
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of UAVs in K; Ht
k(m)m ∈ {H

NLoS,t
k(m)m , H

LoS,t
k(m)m} is the path-

loss from UAV k(m) to ground user m in time slot t with
HNLoS,t

k(m)m and HLoS,t
k(m)m defined in Section III-A; and σ2

m is the
power of the AWGN noise at ground user m. Notice in (9) that
only 1

|K| of the incumbent transmitter’s power (i.e., pTx/|K|)
is considered for each UAV and its associated ground users
because of the UAVs’ FDMA-based spectrum access. It is
worth pointing out that we consider FDMA- and TDMA-
based spectrum access for the UAV networks because we want
to focus this work on the interference control between the
UAV and the incumbent systems. The resulting cross-system
spectrum sharing scheme can also be extended to other more
advanced spectrum access schemes for UAVs [26], [27].

Finally, the capacity achievable by user m in time slot t,
denoted as Ct

k(m)m, can be expressed as

Ct
k(m)m =

B

|K||Mt
k|
[
Pr
(
HNLoS,t

k(m)m

)
log2

(
1 + γtm(HNLoS

k(m)m)
)

+ Pr
(
HLoS,t

k(m)m

)
log2

(
1 + γtm(HLoS

k(m)m)
)]
, (10)

where Pr(·) is the probability of LoS and NLoS transmissions
defined in Section III-A and γtm(·) is the SINR of ground user
m defined in (9).

D. Problem Formulation

Define P = (ptk)
t∈T
k∈K as the transmission power vector of

the UAVs, A = (αt
km)t∈Tk∈K,m∈M as the UAV-user association

vector, and Q = (codt
k)

t∈T
k∈K as the UAV location vector.

Then the objective of the SwarmShare control problem is
to maximize the aggregate capacity of the UAV network by
jointing controlling the transmission power of the UAVs and
their flight trajectory as well as association with the ground
users, while meeting the cross-system interference constraints,
as formulated as

Maximize
P, A, Q

1

|T |
∑
t∈T

∑
m∈M

Ct
k(m)m (11)

Subject to : 0 ≤ ptk ≤ pmax,∀k ∈ K, t ∈ T , (12)
Association Constraints (7), (8) (13)

1

|T |
∑
t∈T

I(γtRx ≤ γthRx) ≤ Prmax
Rx︸ ︷︷ ︸

Cross−system Interference Constraint

(14)

where Ct
k(m)m is defined in (10), pmax is the maximum

transmission power of each UAV, I(·) is the indication function
taking value of 1 if the condition holds and 0 otherwise, and
γthRx and Prmax

Rx denote threshold SINR and the maximum
tolerable SINR outage probability of the incumbent system.
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Fig. 1: SwarmShare Spectrum Sharing Framework.

IV. SPECTRUM COEXISTENCE DESIGN

The SwarmShare problem formulated in (11)-(14) is a
mixed integer nonlinear nonconvex programming (MINLP)
problem, because of the binary UAV-user association variables
αt
km and the underlying complicated mathematical expressions

in (11) and (14). Moreover, to solve the problem directly it
requires to know the real-time channel state information (CSI)
between the UAV network and the incumbent system, which
is however unavailable, as discussed in Section I, because of
the low-detectability of the directional incumbent signals.

To address the above challenges, in this work we consider
an AFC (Automated Frequency Controller)-assisted spectrum
sharing. AFC has been adopted for spectrum sharing in the TV
whitespace band as well as the 6 GHz band by determining
certain exclusion zones nearby the incumbent systems [28],
[29]. Our work differs from this with our objective to enable
exclusion-zone-free hence more flexible spectrum sharing, and
study the statistical behavior of the aggregate interference
from the UAV networks to the incumbent system, while
keeping the cross-system signaling at a minimum level. The
diagram of the proposed spectrum coexistence framework is
illustrated in Fig. 1, where there are three major components,
i.e., Initial Power Enforcement, Offline-dataset Guided Online
Power Adaptation, and Reinforcement Learning-based UAV
Optimization.

A. Initial Power Enforcement

The objective of this phase is to determine, following a
set of Power Control Principles, a rough transmission power
for each of the UAVs. In this work, we consider three basic
principles to accommodate the effects of the UAVs’ flight
altitude and their locations on the interference to the incumbent
system, while more sophisticated principles can be incorpo-
rated in the future. These principles are i) UAVs that are closer
to the incumbent receiver should transmit at lower power; (ii)
with the same distance to the incumbent receiver, UAVs flying
higher should transmit at lower power; and (iii) with the same
distance and altitude, UAVs with smaller angles relative to the
boresight axis of the incumbent receivers’ directional antenna
should transmit at lower power. Particularly, the rationale of
the second principle is that, with the hybrid LoS/NLoS channel
model described in Section III-A, it is more likely for a UAV
to establish LoS links to the incumbent receiver when flying
higher and hence cause more interference. Similarly, for the
third principle, based on the directional antenna model de-
scribed in Section III-B, a UAV will cause higher interference
when more aligned with the incumbent receiver’s antenna.

In SwarmShare, an initial power enforcement coefficient,
denoted as Enf(codt

k, codRx,angInc), will be calculated for
each UAV k ∈ K in time slot t ∈ T based on the above three
principles. This is accomplished using three Sigmoid-family
functions Sig1(·), Sig2(·) and Sig3(·), as follows:
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Enf(codt
k, codRx,angRx) =

Sig1

(
leuc(cod

t
k, codRx)

ltheuc

)
︸ ︷︷ ︸

Principle 1

·Sig2
(
h(codt

k) + h(codRx)

lthhgh

)
︸ ︷︷ ︸

Principle 2

· Sig3
(
lrad(cod

t
k, codRx,angInc)

)
︸ ︷︷ ︸

Principle 3

, (15)

where leuc(·, ·) represents the Euclidean distance between
UAV k and the incumbent receiver given their coordinates;
h(·) represents their height, and lrad(·, ·, ·) ∈ [0, π] is the
angle (in radians) of UAV k with respect to the boresight
axis of the incumbent receiver antenna; finally, ltheuc and
lthhgh in equation (15) are respectively threshold distance and
height beyond which Sig1(·) and Sig2(·) become nearly
constant. It is worth pointing out that, since a standard sigmoid
function is a differentiable, monotonically increasing, real
function taking values in [0, 1], we design Sig1(·), Sig2(·)
and Sig3(·) by scaling, shifting and reversing the standard
sigmoid function to consider the effects of UAV location,
flight altitude and relative angle to the incumbent receiver.
For example, Sig1(x) = 1

1+e−3(x/70−2) has been adopted for
principle 1 in this work, while Sig2(·) and Sig3(·) can be
defined similarly. With the obtained power enforcement coef-
ficient Enf(codt

k, codRx,angInc), each UAV’s power can be
initialized as, in time slot t ∈ T ,

pinik = pmaxEnf(codt
k, codRx,angInc), ∀k ∈ K, (16)

where pmax is the maximum transmission power of each UAV.

B. Offline-dataset Guided Online Power Adaptation

Recall in Section III that our goal is to enable UAV
operations in the 6 GHz band while meeting the cross-system
interference constraint (14). In SwarmShare, this is accom-
plished by fine tuning the above obtained initial transmission
powers for the UAVs following a three-step approach, as
described as follows.

1) Model-based Feature Extraction: In this step, we first
extract the network features that can be used later in Data-
Driven Calibration, rather than using directly the raw network
topology information such as UAV location vector (codt

k)
t∈T
k∈K.

This is important to mitigate the curse of dimensionality
problem [30] especially with large number of UAVs. In
SwarmShare, we select the power adaptation coefficient, de-
noted as ηt for time slot t, as the network feature. Then, given
the above obtained initial transmission power pinik for UAV
k ∈ K, a new transmission power ptk can be calculated as

ptk = pinik ηt (17)
and interference constraint (14) can be rewritten as

1

|T |
∑
t∈T

I(γtRx(η
t) ≤ γthRx) ≤ Prmax

Rx , (18)

where γtRx(η
t) is the SINR of the incumbent receiver de-

fined in (6) by substituting (17) into (6). Consider ergodic
stochastic process for the aggregate interference and denote
Prob

(
γtRx(η

t) ≤ γthRx

)
as the SINR outage probability in time

slot t ∈ T , then the left-hand side of (18) can be equivalently
represented as

Prob
(
γtRx(η

t) ≤ γthRx

)
(19)

= Prob

(
P sig
Rx

P itf
Rx

≤ γthRx

)
(20)

=

∫ +∞

0

∫ +∞

P
sig
Rx
γth
Rx

pdfP sig
Rx

(psig)︸ ︷︷ ︸
Noncentral
Chi−square
Distribution

· pdfP itf
Rx
(pitf)︸ ︷︷ ︸

Gamma
Distribution

dpitfdpsig, (21)

where P sig
Rx and P itf

Rx are the numerator and denominator of
(6), respectively; Rayleigh distribution has been considered
for the small-scale fading and hence noncentral chi-square
distribution [31] for the receive power of the incumbent
signals; and finally as in [32], [33] Gamma distribution is
considered for the aggregate interference power. The details
of mathematical equations are omitted for the distributions
due to space limitations. It is worth pointing out that, as
shown later in Section V, the aggregate interference of UAVs
does not follow any existing statistical distributions. In this
work, we consider Gamma distribution in (21) because we
want to obtain a rough estimation of the power adaptation
coefficient ηt, which will be further calibrated based on offline
dataset. Notice that given the maximum tolerable SINR outage
probability Prmax

Rx in (18), the maximum ηt can be determined
efficiently by bisection search, since the left-hand side of (18),
which is equivalent to (21), is a monotonically increasing
function of the UAVs’ transmission power hence ηt.

2) Offline-Dataset Generation: Given the above obtained
network feature ηt, and each UAV’s transmission power ptk
can be updated according to (17). Since the power adaptation
may be inaccurate because of the inaccuracy of the Gamma
distribution-based interference model in (21), we further cali-
brate the power control for UAVs with the assistance of offline
measurements. Specifically, given the transmission power vec-
tor (ptk)k∈K, the corresponding SINR outage probability of the
incumbent system can be obtained by offline simulations. By
varying the number of UAVs, their locations as well as the
maximum tolerable SINR outage probability in the simula-
tions, we are able to obtain an SINR outage probability vector.
Denote Prmax

Rx = (Prmax
Rx ) as the vector of the maximum toler-

able outage probability, and accordingly denote the simulated
outage probability vector as Pr

max

Rx (η) = (Pr
max

Rx (ηt)) with
Pr

max

Rx (ηt) being the SINR outage probability given network
metric ηt and η = (ηt) the network feature vector.

3) Data-Driven Calibration: Finally, a mapping between
Prmax

Rx and Pr
max

Rx (η) can be established through function
approximation, e.g., based on linear regression [34], echo state
learning [35] or deep neural networks [14]. In this work we
find that it is enough to approximate the mapping based on lin-
ear regression. Denote the mapping as Prmax

Rx = f(Pr
max

Rx (ηt).
Then, given Pr

max

Rx , the value of Prmax
Rx and the corresponding

network feature ηt can be obtained at network run time and
further used for UAV power control based on (17).
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C. Reinforcement Learning-based UAV Optimization

As illustrated in Fig. 1, the above obtained ηt will be broad-
cast to the UAVs, which will then calculate their transmission
power based on (17). Meanwhile, the UAVs will update their
flight and association strategies to serve their users with higher
spectral efficiency. To this end, we consider as in [25] shortest-
distance-based association strategy. Then, in each time slot
t ∈ T the association variables αk,m defined in Section III
can be determined as

αk,m =

{
1, if k = argmink‖codt

k − codm‖2

0, otherwise
. (22)

Further divide the whole network area into a set of three
dimensional rectangles. In each time slot, each UAV is allowed
to either move to one of its adjacent rectangles or stay in the
current. For each of the candidate rectangles, the UAV will first
calculate the achievable capacity given the transmission power
calculated in Sections IV-A and IV-B and the set of ground
users it serves. Finally, as in [36], reinforcement learning
with ε-greedy search is adopted to guide the exploitation and
exploration during the UAV’s flight control. The details of the
learing algorithm are omitted due to space limitations.

D. Complexity Analysis

The most time-consuming operation in the above pro-
cedure is offline-dataset guided online power adaptation in
Section IV-B. In Section IV-B1, we need to determine the
network feature ηt given the UAV network’s topology and the
maximum tolerable SINR outage probability. Since the SINR
outage probability is a monotonically increasing function of ηt,
the value of ηt can be obtained efficiently based on bisection
search. The dataset generation and regression in Section IV-B2
can be conducted offline, and in Section IV-B3 Prmax

Rx can be
determined online by solving a linear problem.

Regarding communication overhead, as illustrated in Fig. 1,
in Section IV-A the AFC needs to collect one-time location and
orientation information of the incumbent system and broadcast
the collected information to the UAVs. If the incumbent system
does not move frequently (which is usually the case, e.g.,
fixed point-to-point applications), the resulting communication
overhead can be neglected. The AFC also needs to collect
periodically the UAVs’ locations and broadcast the updated
power adaptation coefficient ηt to the UAVs. Since it is enough

to represent these information in 16 bytes (three float numbers
for location and one for the power adaptation coefficient,
and each float number takes 4 bytes), the resulting broadcast
overhead is low as well. Moreover, we will show later in
Section V that the UAVs do not need to report their locations to
the AFC in real-time, without obviously increasing the SINR
outage probability of the incumbent system. This will further
reduce the communication overhead.

V. PERFORMANCE EVALUATION
In this section we validate the effectiveness of the

SwarmShare framework described in Sections III and IV. We
consider a network area of 500×500×50 m3, with 50 ground
users randomly located in the network and the number of
UAVs varying from 3 to 24. The incumbent transmitter and
receiver are deployed with coordinates of (200, 200, 10) and
(250, 250, 10), respectively. The center frequency of the shared
spectrum is set to 6 GHz with total bandwidth of 10 MHz. The
maximum transmission power of the incumbent transmitter
and the UAVs are set to 1 W and 0.25 W, respectively.
For the bisectorized antenna model desribed in Section III,
the maximum and minimum gains are set to 1 and 0.5,
respectively. The power density of the AWGN is set to -
174 dBm/Hz. The probability of LoS and NLoS links are set
to 0.7 and 0.3, respectively. The threshold parameters ltheuc and
lthhgh in (15) are set to 70 m and 30 m, respectively. Next, before
discussing the interference control results, we first determine
the threshold angle for the directional antenna model described
in Section III-B and validate the effectiveness of the data-
driven calibration scheme proposed in Section IV-B.

Threshold Angle Measurement. We first determine the
threshold angle for the directional antenna model described
in Section III-B by conducting a set of experimental mea-
surements. A snapshot of the testbed is shown in Fig. 2(a),
where the transmitter is a USRP B210 software radio with
omnidirectional antenna, the receiver is another USRP B210
with Tupavco TP542 antenna, and the baseband signal pro-
cessing is conducted based on GNU Radio on a Dell Latitude
7400 laptop. Tupavco TP542 is a directional Wi-Fi antenna
operating in frequency range up to 5.8 GHz (very close to the
6 GHz band) with antenna gain of 13 dBi. We measure the
received power by varying the relative of the transmitter with
respect to the boresight direction of the directional antenna
(as illustrated in Fig. 2 (a)) and the transmission distance

Transmitter 
(USRP B210)

Receiver
(USRP B210 &

Tupavco TP542)

Host 
(Dell Latitude 7400 )

Protractor

Boresight 
Direction

0 Degrees 30 Degrees

60 Degrees 90 Degrees 120 Degrees

(a) (b)
Fig. 2: (a) Snapshot of the testbed setup for threshold angle measurement; (b) Examples of the measurement results.
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Fig. 3: Aggregate interference pdf with (a) 10 and (b) 20 UAVs; (c) Validation of data-driven predication of the SINR outage probability
for the incumbent system.
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Fig. 4: Aggregate interference pdf with (a) 10 and (b) 20 UAVs; (c) Validation of data-driven predication of the SINR outage probability
for the incumbent system.

and relative angle is established based on XXX aggregation
method [REF]. Based on the regression results, we set 30
degree as the threshold angle for the bisectorized antenna
model Section III-B, which corresponds to the 3 dB angle
of the Tupavco TP542 antenna.

Data-Driven Interference Prediction. Given above ob-
tained threshold angle, we further characterize the statistical
behavior of the aggregate interference from the coexisting
UAVs to the incumbent receiver. To this end, we conduct a
set of simulations over UBSim, a newly developed even-driven
simulator for integrated aerial-ground networks. Details of the
simulator are omitted due to space limitations. The results
are reported in Figs. 4(a) and (b) with XX and XX UAVs,
respectively. We fit the collected interference values with
four distributions, including Gaussian [REF], Inverse Gaussian
[REF], Gamma [REF] and Inverse Gamma [REF], and found
that the power of the aggregate interference does not follow
any of these distributions. This is actually our initial motivation
to design SwarmShare based on a data-driven approach.

Fig. 4(c) reports the results of the data-driven prediction
of the SINR outage probability against the network feature
defined in Section IV-B, i.e., Prmax

Rx in (17). We can find
that the predicated SINR outage probability matches well
the simulated. For example, in the case of 6 UAVs, the
prediction accuracy ranges between XX% and XX% with an
average of XX%. The average prediction accuracy are XX%
and XX% for 12 and 18 UAVs, respectively. This verified
the effectiveness of the data-driven approach for aggregation
interference characterization.

Case Study. Figure 5 shows an example of the power
control results based on SwarmShare. To make it easier to gain
some insights visually, in this example all the XX UAVs are
deployed uniformlly along 4 circles with different altitudes and
radiuses. Note that the power allocation has been determined
by jointly considering the three basic principles described
in Section IV-A. From the figure it can be seen that lower
transmission powers have been allocated to UAVs along the
lower circles. It can be seen that, because of the shorter
distances from the incumbent receiver, lower transmission

Fig. 5: Case study of power control based on SwarmShare
Remove “Power Unit: Watt”; Change Drone to UAV.

power has been allocated to the UAVs of the first circle from
the bottom, e.g., XXX mW for UAV 1 (i.e., D1[1] in Fig. 5)
against XX for UAV XX and XX for UAV XX along the
second and third circles, respectively. Moreover, along the
same circle UAVs more aligned with the incumbent has been
allocated lower transmission powers, e.g., XX for UAV XX
vs XX for UAV XX along the second circle.

It is worth pointing out that UAVs along the fourth
ε for RL method is set to 0.98. The target PER probability

threshold is set to 0.05. each rectangle is with 50×50×10 m3

In Fig.6, Fig.?? and Fig.7, we plot instantaneous throughput
of the incumbent receiver and the UAV network with different
number of UAVs in both static and dynamic scenarios. As
shown in the three figures, our proposed interference control
scheme works very well in both static and dynamic scenarios,
that is the UAV can work in 6 GHz band with limited
interference to incumbent users. In static scenario, we fixed
the channel type, LoS and NLoS, between UAV and other
nodes and run simulator for 1000 times to get the throughput
for both UAV network and incumbent network. In dynamic
scenarios, we adopt both ε-greedy search and random selection
to optimize UAV trajectory and generate the channel type
between UAV and nodes based on the probability.

7

Fig. 4: Case study of power control based on SwarmShare. D#1[#2]:
#1 is the UAV index, and #2 denotes the transmission power of the
UAV in mW.

from 1 to 3 meters. Examples of the measurement results
are given in Fig. 2(b) with transmission range of 1 m and
relative angles varying from 0 to 120 degrees at step of
30 degrees. The mapping between the received power and
relative angle is established based on logarithmic regression
method [37]. Based on the regression results, we set 30 degree
as the threshold angle for the bisectorized antenna model
Section III-B, which corresponds to the 3 dB angle of the
Tupavco TP542 antenna.

Data-Driven Interference Prediction. Given the above
obtained threshold angle, we further characterize the statistical
behavior of the aggregate interference from the coexisting
UAVs to the incumbent receiver. To this end, we conduct a
set of simulations over UBSim, a newly developed Universal
Broadband Simulator for integrated aerial-ground networking.
Details of the simulator are omitted due to space limitations.
The results are reported in Figs. 3(a) and (b) with 10 and
20 UAVs, respectively. We fit as in [38], [39] the collected
interference values using four distributions, including Gaus-
sian, Inverse Gaussian, Gamma and Inverse Gamma, and find
that the power of the aggregate interference does not follow
any of these distributions. This is actually our motivation to
design SwarmShare based on a data-driven approach. Fig. 3(c)
reports the results of the data-driven prediction of the SINR
outage probability. We can find that the predicted SINR outage
probability matches well the simulated.

Case Study. Figure 4 shows an example of the power
control results based on SwarmShare. To visualize the effects
of the power control principles described in Section IV-A,
in this example all the 24 UAVs are deployed uniformlly
along 4 circles with different altitudes and radiuses. From
the figure it can be seen that lower transmission powers have
been allocated to UAVs along the lower circles. Also, because
of the shorter distances from the incumbent receiver, lower
transmission power has been allocated to the UAVs of the first
circle from the bottom, e.g., 1.0102 mW for UAV 1 (i.e., D1[1]
in Fig. 4) against 16.7896 mW for UAV 7 and 39.6234 mW
for UAV 13 along the second and third circles, respectively.
Moreover, along the same circle UAVs more aligned with the
incumbent receiver have been allocated lower transmission
powers, e.g., 8.3948 mW for UAV 10 vs 39.6234 mW for UAV
9 along the second circle. Finally, we notice in this example
that all the UAVs along the fourth (i.e., the highest) circle have
been allocated zero transmission power because no users are
associated with them based on the shortest-distance association
strategy described in Section IV-C. This also conforms to the
third power control principle, i.e., with the same distance and
relative angle, higher altitudes result in lower transmission
power because of higher probability of LoS transmissions.
It is worth pointing out that the power allocation results are
determined by jointly considering the three basic principles
described in Section IV-A. In the following experiments, we
will further evaluate the effectiveness of SwarmShare on the
cross-system interference control.

In Figs. 5 and 6, we plot the instantaneous capacity achiev-
able by the incumbent system and the UAV networks with dif-
ferent numbers of UAVs. In Fig. 5(a), we consider 6 hovering
UAVs, and the maximum tolerable SINR outage probability
is set to 0.05 for the incumbent system. The achievable
capacity is plotted for 1000 time slots. Results indicate that the
interference constraint of the incumbent system can be very
well fulfilled, with SINR outage probability of 0.032. Similar
results can be obtained with 12 and 18 hovering UAVs in
Figs. 5(b) and (c), with the SINR outage probabilities of 0.029
and 0.021, respectively.

Figure 6 shows the corresponding results with moving
UAVs. In this experiment, the network area is divided into
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(a) 6 UAVs, Hovering
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(b) 12 UAVs, Hovering
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Fig. 5: Instantaneous capacity of the incumbent system and the UAV network with hovering UAVs. The violation probabilities
are (a) 0.032, (b) 0.029 and (c) 0.021, respectively.
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(a) 6 UAVs, Moving
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(b) 12 UAVs, Moving
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Fig. 6: Instantaneous capacity of the incumbent system and the UAV network with moving UAVs. The violation probabilities are (a) 0.023,
(b) 0.019 and (c) 0.018, respectively.
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Fig. 7: Average capacity of the incumbent system and UAV networks
with moving UAVs.

a set of three-dimension rectangles each of 50× 50× 10 m3.
The trajectory of the UAVs are controlled as described in
Section IV-C, with exploitation probability of 0.98. The same
as in Fig. 5, the incumbent system’s interference constraints
can be satisfied in all the tested cases, with SINR outage
probability of 0.023, 0.019 and 0.018 for 6, 12 and 18
UAVs, respectively, all below the maximum tolerable outage
probability 0.05. This verifies the effectiveness of SwarmShare
in cross-system interference control.

Average Results. In Fig.7 we report the average capacity
achievable by the incumbent system and the UAV network
with the number of UAVs varying from 3 to 15 at step of
3. Three UAV motility patterns are considered: i) random
movement; ii) reinforcement learning controlled movement
with exploitation probability of 0.98; and iii) hovering UAVs.
The resutls are obtained by averaging over 50000 time slots
for each mobility pattern. It can be seen that, as expected,

obvious capacity gain can be achieved by the UAV network
with all the above three mobility patterns by deploying more
UAVs. For example, for hovering UAVs, the average capacity
increases from around 60 Mbps with 3 UAVs to 80 Mbps
with 15 UAVs. The capacity is further increased to around
100 Mbps with RL-controlled UAV movement. Particularly,
we find that there is no obvious degradation in the capacity of
the incumbent system when there are 6 or more coexisting
UAVs. The average capacity of the incumbent system can
be further increased with less UAVs, e.g., 3, because of the
reduced cross-system interference.

In previous experiments (i.e., Fig. 5) the UAVs report their
locations to the AFC in every time slot. In this experiment,
we investigate the mobility resilience of SwarmShare for
spectrum sharing in the presence of inaccurate UAV locations.
The SINR outage probability results are reported in Fig. 8,
where two mobility patterns are considered for the UAVs,
i.e., random movement and RL-guided movement, and the
maximum tolerable SINR outage probability is set to 0.05 for
the incumbent system. The location reporting period is varied
from 10 time slots to 60. It can be seen that the SINR outage
probability of the incumbent system increases monotonically
with the location reporting period if the UAVs move in an
uncontrolled manner, i.e., completely randomly. For example,
the outage probability is around 0.07 when the reporting period
is 10 time slots and can be up to 0.2 for 60 time slots.
In the case of controlled UAV movement, the SINR outage
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Fig. 8: SINR outage probability vs UAV location reporting period.

probability is barely affected by the location reporting period
and always below the maximum tolerable. This is because
the UAVs will stick with their current best locations at a
high probability (0.98 in this experiment) while exploring new
locations at a low probability (0.02). As a result, the topology
of the UAV network and hence the statistical behavior of their
aggregate interference to the incumbent system changes only
slowly. Therefore, with controlled UAV movement, effective
interference control can be achieved with SwarmShare in
mobile scenarios even with inaccurate UAV locations, e.g.,
because of the temporary loss of the connections to the AFC.

VI. CONCLUSIONS

In this paper, we proposed a new framework called
SwarmShare to enable spectrum sharing between the incum-
bent systems and the coexisting UAV networks in the 6 GHz
band. We validated the effectiveness of the framework through
an extensive simulation campaign. SwarmShare is shown to be
mobility-resilient and hence is suitable for the operations of
moving vehicles such as cars and UAVs on this newly opened
spectrum band without requiring pre-defined exclusion zones.
It is also found that the aggregate interference of the UAVs
does not follow any existing distributions. In future work
we will develop new theoretical models to characterize the
aggregate interference of the UAVs and further validate the
effectiveness of SwarmShare over the UAV testing facilities
being developed in our lab.
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