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Abstract—We design a video coding and decoding framework
for multi-view video systems based on compressed sensing
imaging principles. Specifically, we focus on joint decoding of
independently encoded compressively-sampled multi-view video
streams. We first propose a novel distributed coding/decoding
architecture designed to leverage inter-view correlation through
joint decoding of the received compressively-sampled frames. At
the encoder side, we select one view (referred to as K-view) as
a reference for the other views (referred to as CS-views). The
video frames of the CS-view are encoded and transmitted at
a lower measurement rate than those of the selected K-view.
At the decoder side, we generate side information to decode
the CS-views as follows. First, each K-view frame is down-
sampled and reconstructed, and then compared with the initially
reconstructed CS-view frame to obtain an estimate of the inter-
view motion vector. The original CS-view measurements are then
fused with the generated side image to reconstruct the CS-view
frame through a newly designed algorithm that operates in the
measurement domain.

We also propose a blind video quality estimation method that
can be used within the proposed framework to design channel-
adaptive rate control algorithms for quality-assured multi-view
video streaming. We extensively evaluate the proposed scheme
using real multi-view video traces. Results indicate that up to
1.6 dB improvement in terms of PSNR can be achieved by
the proposed scheme compared with traditional independent
decoding of CS frames.

I. INTRODUCTION

Compressive sampling (CS) can be used to reconstruct

image signals from a “small” number of (random or deter-

ministic) linear combinations, referred to as measurements or

samples, of the original image pixels without collecting the

entire frame [1], [2]. CS-based imaging and video coding has

been recently discussed as the basis for a clean-slate approach

to low-power wireless video streaming systems based on sim-

ple encoder and high-complexity decoder, with applications to

wireless multimedia sensor networks [3], [4].

In this context, we propose and study a multi-view video

encoding and decoding architecture based on compressive

imaging principles, designed to acquire multiple correlated im-

ages from the same area of interest from different views. The

architecture is motivated by wireless video sensing applica-

tions with low-complexity, independent encoders with minimal

inter-sensor communication; and a potentially more complex

joint decoder, which can lead to substantial rate savings and
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Fig. 1: Muti-view encoding/decoding architecture.

energy savings on battery-powered wireless sensors. Theoret-

ical results for noiseless [5] and noisy [6] distributed source

coding have been available since the late seventies. Several

video coding schemes based on CS have been proposed in

the literature [4], [7], [8], [9]. However, they mainly focus

on performing CS reconstruction by exploiting correlation

among successive frames [8], [9] without considering inter-

view correlation; or consider rate allocation with traditional CS

reconstruction methods [4]. In [10], a distributed multi-view

video coding scheme based on CS is proposed, which however

assumes the same measurement rates for different views,

and can only be applied together with specific structured

dictionaries as sparse representation matrix. Differently, in

this work we consider multi-view video sequences encoded

at different rates and with more general sparsifying matrices,

e.g., Discrete Cosine Transform (DCT) and Discrete Wavelet

Transform (DWT). The authors of [11] propose a CS-based

joint reconstruction method for multi-view images, which uses

two images from the two nearest views of the current image

(the right and left neighbors) to calculate a prediction frame.

However, in our work, only one reference view (not necessarily

the nearest one) is selected to reconstruct the side frame for

the joint reconstruction process.

The rest of the paper is organized as follows. In Section

II, we introduce the overall encoding/decoding framework,

and in Section III, we describe the joint muti-view decoder.

We present the simulation results in Section IV, and draw

conclusions in Section V.

II. SYSTEM ARCHITECTURE

We consider a multi-view video streaming system with

N cameras, each capturing a different view of the same

scene of interest. Different views are encoded and transmitted

independently, and then jointly decoded at the receiver side.
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Fig. 2: Block diagram of side frame generation.

Figure 1 illustrates the encoding/decoding architecture, for

N = 2 - the architecture can be easily extended to N > 2.

At the encoder side, one of the considered views is selected

as a reference for the other view. We refer to the selected view

as K-view, and to the other view as CS-view. The frames of

the K-view and of the CS-view are encoded at a measurement

rate of Rk and Rcs, respectively. We assume that Rcs ≤ Rk.

If we denote by H ×W the dimension of the captured scene

(in pixels), then each K-view frame, denoted as xk ∈ ZH×W

is sampled into a measurement matrix yk ∈ ZHk×Wk with
Hk×Wk

H×W = Rk, and the CS-view frame xcs ∈ ZH×W is

sampled into ycs ∈ ZHcs×Wcs with Hcs×Wcs

H×W = Rcs. Readers

are referred to [7] for details of the encoding procedure.

At the decoder side, the frames of the K-view are re-

constructed based on the received measurements of the K-

view only. To reconstruct a CS-view frame, we first generate

a side frame based on the received K-view and CS-view

measurements. Then, we fuse the initially reconstructed CS-

frame with the generated side frame through a newly designed

fusion algorithm. In the following, we describe the joint multi-

view decoder in detail.

III. JOINT MULTI-VIEW DECODING

We first reconstruct the frames of the K-view, which will

serve as a reference for CS-view frame reconstruction.

A. K-view Decoding
Consider any frame of the K-view video sequence, and

denote the received measurement vector by ŷk ∈ ZHk×Wk

(i.e., a distorted version of yk considering the joint effects

of quantization, transmission errors, and packet drops). Then,

following CS theory, the K-view frame can be reconstructed

by solving a convex optimization problem

P1 : minimize ‖s‖1
subject to ‖ŷk − ΦkΨs‖22 ≤ ε,

(1)

and then by mapping x̂k = Ψs∗, where Φk and Ψ are the

sampling matrix and the sparsifying matrix, respectively, ε the

predefined error tolerance, and s∗ represents the reconstructed

coefficients (i.e., the minimizer of (1)).

B. Side Frame Generation
The core idea behind the proposed technique for generating

the side frame is to compensate the reconstructed K-view

frame x̂k by estimating the inter-view motion vector. For this

purpose, we down-sample the received K-view measurements

ŷk, and compare the reconstructed lower-quality K-view frame

with the initially reconstructed CS-view frame. The block

diagram of the side frame generation method is illustrated in

Fig. 2.

Initial reconstruction. Denote ŷcs as the received CS-view

video measurement, and Φcs as the corresponding sampling

matrix. Then, a preliminary reconstructed CS-view frame (de-

noted by x̂pcs) can be obtained, from Hcs×Wcs measurements,

by substituting ŷcs, Φcs and x̂cs into (1), and by then solving

the corresponding optimization problem.

Down-sampling and reconstruction. We then down-sample

the received K-view measurement vector ŷk to obtain a new

K-view frame with the same (or comparable) reconstructed

quality with respect to x̂pcs. Experiments have verified that this

leads to more accurate motion vector estimation than using

the original K-view frame x̂k reconstructed in Section III-A.

Since Rcs ≤ Rk as stated in Section II, without loss of

generality, we consider the CS-view sampling matrix Φcs to

be a sub-matrix of Φk. Then, down-sampling can be achieved

by selecting from ŷk only measurements corresponding to

Φcs, which is equivalent, apart from transmission errors and

quantization errors, to sampling the original K frame with

the matrix used for sampling the CS frame. Denote the

down-sampled K-view measurement vector as ŷdk, and the

corresponding reconstructed frame with lower quality as x̂d
k.

Motion vector estimation. We can now estimate the

inter-view motion vector by comparing the preliminarily-

reconstructed CS-frame x̂pcs and the quality-degraded K-frame

x̂dk. First, we split x̂p
cs into a set Bp

cs of blocks with block size

Bp
cs×Bp

cs (in pixel). For each current block ics ∈ Bp
cs, within a

predefined search range p in the quality-degraded K-frame x̂d
k,

a set Bd
k(ics, p) of reference blocks, each with the same block

size Bp
cs × Bp

cs, can be identified based on existing strategies

[12], e.g., exhaustive search (ES), three step search (TSS), or

diamond search (DS). Then, the mean of absolute difference

(MAD) between block ics ∈ Bp
cs and any block ik ∈ Bd

k(ics, p)
is defined as

MADicsik =

∑Bp
cs

m=1

∑Bp
cs

n=1

∣∣vpcs(ics,m, n)− vdk(ik,m, n)
∣∣

Bp
cs ×Bp

cs
,

(2)

with vpcs(ics,m, n) and vdk(ik,m, n) representing the value of

the pixels at (m,n) in block ics ∈ Bp
cs and ik ∈ Bd

k(ics, p),
respectively. Let i∗k ∈ Bd

k(ics, p) represent the best matching

block with the lowest MAD, i.e.,

i∗k = argmin
ik∈Bd

k(ics,p)

MADicsik . (3)

and MADicsi∗k be the corresponding MAD. Furthermore, let

Δm(ics) and Δn(ics) represent the horizontal and vertical

offset (in pixel) of the block i∗k relative to the current block

ics.
Different from motion vector search in single view encoding

[13], for which it is sufficient to search for the block corre-

sponding to the minimum MAD (i.e., block i∗k), in the multi-

view case the block i∗k is not necessarily a proper estimation

of block ics due to the possible “hole” problem (i.e., an object

that appears in a view is occluded in other views), which can

be rather severe.
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To address this challenge, we adopt a threshold-based

policy. Let MADth represent the predefined MAD threshold,

which can be estimated online by periodically transmitting

a frame at a higher measurement rate. Then, if a block

i∗k ∈ Bd
k(ics, p) can be found satisfying MADicsi∗k ≤ MADth,

the current block ics ∈ Bp
cs is marked as referenced with

motion vector (Δm(ics),Δn(ics)); Otherwise, the block is

marked as non-referenced.

Motion compensation. The side frame xsi ∈ ZH×W can then

be generated by compensating the initially reconstructed CS-

view frame x̂pcs, with given motion vector (Δm(ics),Δn(ics))
for each block in Bp

cs, and the reconstructed K-view frame x̂k.1

The compensation works as follows. First, xsi is initialized to

xsi = x̂p
cs. Then, we replace each referenced block ics using the

corresponding block from the K-view frame x̂k with motion

vector (Δm(ics),Δn(ics)).

C. Fusion Decoding Algorithm
Finally, we fuse the received CS-view measurements ŷcs and

the above obtained side-frame xsi, in favor of further video

quality enhancement, and to remove the block effects of the

side frame. This is achieved by generating CS measurements

by sampling xsi, appending the generated measurements to

ŷcs, and then reconstructing a new CS-view frame based on

the combined measurements.

To sample the side frame, we use a sampling matrix Φ,

with Φcs and Φk both being a sub-matrix of Φ. Then, we

select a number Rsi ×H ×W of the resulting measurements,

with Rsi being the predefined measurement rate for the side

frame. The value of Rsi depends on the amount of the CS-

view measurement ŷcs that have already been received. The

larger Rcs is, the smaller should be Rsi. No side information

is needed in the case of sufficient CS-view measurement. In

this work, we empirically set Rsi as follows:⎧⎨
⎩

Rsi = 1−Rcs, if Rcs ≤ 0.5
Rsi = 0.6−Rcs, if 0.5 < Rcs ≤ 0.6
Rsi = 0, if Rcs > 0.6

(4)

D. Blind Video Quality Estimation
Denote x̂cs as the final jointly reconstructed CS-view frame.

Then, a natural question is: how good is the reconstructed

video quality? This is especially critical in CS-based multi-

view video streaming systems where the original pixels are

not available either at the transmitter or at the receiver side.

To address this challenge, we propose a blind video quali-

ty estimation method within the coding/decoding framework

described above.

First, the reconstructed CS-view frame x̂cs is resampled at

the CS-view measurement rate Rcs, with the same sampling

matrix Φcs, thus obtaining Mcs new measurements denoted by

ycs. Then, the PSNR of x̂cs with respect to the original frame

xcs (which is not available even at the encoder side) can be

estimated as

1Note that we estimate the motion vector based on the quality-degraded K-
view frame, but compensate the initially reconstructed CS-view frame using
the K-view frame at the original quality.

(a) Original (b) Independent CS−decoding

(c) Side Frame (d) Joint Decoding

Fig. 3: The fifth frame of Exit; Measurement rate is set to 0.2.

PSNR = 10 log10
(2n − 1)

2

MSE
+ΔPSNR, (5)

with n being the number of bits per measurement, and

MSE =
‖ ŷcs − ycs‖22

M2
cs

. (6)

In (5), ΔPSNR is a compensation coefficient that has been

found to stay constant or vary only slowly for each view.

Hence, it can be estimated online by periodically transmitting

a CS-frame at a higher measurement rate.

IV. SIMULATION RESULTS

We assess the performance of the proposed joint decoder

with one K-view and one CS-view. View 1 (defined as K-

view with measurement rate 0.6) and View 2 (defined as CS-

view with measurement rate 0.1, 0.2, or 0.3) of Ballroom
and Exit multi-view data sets are used in the experiments,

representing scenes with fast- and moderate-level movement,

respectively. Frames for both views are represented by 8-bit

grayscale bitmap, with spatial resolution of 320× 240 pixels.

At the encoder side, a 32 × 32 Hadamard matrix is used to

generate the sampling matrix Φk, Φcs, Φ. TSS [14] is used

for motion vector estimation at the decoder side, with block

size and search range set to B = 16 and p = 32, respectively.

In the blind video quality estimation algorithm the value of

Δ PSNR is set to 6 and 2.9 for Ballroom and Exit, respectively.

GPSR [15] is used to solve P1 in (1). We compare the video

quality of the reconstructed CS-view with that achieved by

the independent CS-decoder at a measurement rate 0.1, 0.2,

or 0.3.

First, we evaluate the proposed joint decoder considering

a specific frame as an example, i.e., the fifth frame of Exit.
Results are reported in Fig. 3. We found that the blurring

effect in the independently reconstructed frame is mitigated

through joint decoding. Taking the regions within ellipses in

Fig. 3(b) and (d) as example, we can see that the video quality

improvement is noticeable, which corresponds to a Structural

Similarity (SSIM) [16] improvement of 0.11 (from 0.74 to

343



10 20 30 40 50
0.5

0.6

0.7

0.8

Video Frame Index

S
S

IM
Exit, Measurement Rate = 0.1

 

 

10 20 30 40 50
0.7

0.75

0.8

0.85

Video Frame Index

S
S

IM

Exit, Measurement Rate = 0.2

 

 

10 20 30 40 50
0.5

0.6

0.7

Video Frame Index

S
S

IM

Ballroom, Measurement Rate = 0.2

 

 

10 20 30 40 50
0.65

0.7

0.75

0.8

Video Frame Index

S
S

IM

Ballroom, Measurement Rate = 0.3

 

 

Joint
Independent

Joint
Independent

Joint
Independent

Joint
Independent

10 20 30 40 50
23

24

25

26

Video Frame Index

P
S

N
R

 (d
B

)

Ballroom, Measurement Rate = 0.2

 

 

10 20 30 40 50
26

27

28

29

Video Frame Index

P
S

N
R

 (d
B

)

Ballroom, Measurement Rate = 0.3

 

 

10 20 30 40 50
23

24

25

26

27

Video Frame Index

P
S

N
R

 (d
B

)

Exit, Measurement Rate = 0.1

 

 

10 20 30 40 50
27

28

29

30

31

Video Frame Index

P
S

N
R

 (d
B

)

Exit, Measurement Rate = 0.2

 

 Joint
Independent

Joint
Independent

Joint
Independent

Joint
Independent

10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

Video Frame Index

P
S

N
R

 (d
B

)

Ballroom

10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

Video Frame Index

P
S

N
R

 (d
B

)

Exit

Real PSNR
Estimated

Real PSNR
Estimated

(a) (b) (c)

Fig. 4: Simulation results for CS-view: (a) SSIM comparison for Exit and Ballroom, (b) PSNR comparison for Exit and

Ballroom, (c) Evaluation of the blind quality estimation algorithm.

0.85). The block effect in the side frame in Fig. 3(c) has also

been removed.

Then, we compare the achieved SSIM and PSNR of (i) CS-

view at a measurement rate 0.1, 0.2 and 0.3 with independent

decoding (in black), and (ii) with our proposed joint decoding

method (in red) for the first 50 frames of Exit and Ballroom.

This is illustrated in Fig. 4(a) and 4(b), respectively, which

show that the proposed algorithm outperforms independent CS

decoding up to 0.12 in terms of SSIM and 1.6 dB in terms

of PSNR with both low-motion Exit and fast-motion Ballroom
sequences, and at different measurement rates.

Finally, to evaluate the proposed blind quality estimation

method, we transmit the CS-view sequence over time-varying

channels with a randomly generated error pattern. The K-

view is assumed to be correctly received and reconstructed

(e.g., through strong channel error protection). A setting

similar to [4] is considered for CS-view transmission, i.e.,

the encoded CS-view measurements are first quantized and

packetized. Then, parity bits are added to each packet. A

packet is dropped at the receiver if detected to contain errors

after a parity check. The result for 100 successive frames is

illustrated in Fig. 4(c) (where the top figure refers to Ballroom,

while the bottom refers to Exit), between real PSNR (red

dot) and estimated PSNR (blue line). We can conclude that

our proposed blind estimation within our joint decoding of

independently encoding framework is rather precise, with an

estimation error of 4.32% for Ballroom and of 6.50% for Exit,
respectively.

V. CONCLUSIONS

We have designed a new scheme for jointly decoding

independently- and compressively-sampled multi-view video

streams. Simulation results showed that the proposed joint

decoder outperforms the independent CS-decoder in the case

of both fast and moderate motion levels. The accuracy of a

newly-proposed blind video quality estimation method was

also verified.
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