
OSWireless: Enhancing Automation for Optimizing
Intent-Driven Software-Defined Wireless Networks

Sabarish Krishna Moorthy1, Zhangyu Guan1, Nicholas Mastronarde1,
Elizabeth Serena Bentley2, and Michael Medley2

1Department of Electrical Engineering, University at Buffalo, Buffalo, NY 14260, USA
2Air Force Research Laboratory (AFRL), Rome, NY 13440, USA

Email: {sk382, guan, nmastron}@buffalo.edu, {elizabeth.bentley.3, michael.medley}@us.af.mil

Abstract—To control wireless networks with optimized config-
urations, engineers usually need to grapple simultaneously with
network modeling, algorithm and protocol design as well as their
implementation on distributed nodes. This process is tedious and
error prone. In this article we attempt to address this challenge
by designing OSWireless, a new control plane for optimizing
software-defined wireless networks. At the core of OSWireless is
the virtualization of four control plane functionalities, including
intent, mathematical, algorithmic and forwarding specifications,
and then provide them as a service to network engineers. To
this end, we design two new subplanes for the control plane:
Wireless Network Abstraction Specification (WiNAS) Subplane
and Optimization-as-a-Service (OaaS) Subplane. The former
converts intent specifications defined using high-level APIs to the
corresponding mathematical specifications, and the latter gener-
ates automatically operational (possibly distributed) algorithmic
specifications. We prototype OSWireless and deploy it over NeXT,
a newly developed software-defined experimentation testbed, and
showcase the flexibility of OSWireless in automated generation
of control programs and the effectiveness of the generated
programs considering a variety of network control problems.
OSWireless can help enhance the automation of wireless network
development, deployment and optimization.

Index Terms—Intent-Driven Networks, Software-Defined Net-
working, Specification Abstraction.

I. INTRODUCTION

Software-defined networking (SDN) has been envisioned as
a key technique to enable programmable networks with high
scalability and low management complexity, and to accelerate
the adoption of new communication techniques and hence
hasten the network evolution [1]–[4]. In the past decade, SDN
has captured the attention of both academia and industry [5]–
[9]. Notably, in 2011 the Open Networking Foundation (ONF)
released OpenFlow, a standard defining the communication
interface between the control and data planes of SDN-based
networks [1]. Later, Google deployed their first SDN-enabled
backbone wide area network called B4 based on OpenFlow for

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contrac-
tor acknowledges Government’s support in the publication of this paper. This
material is based upon work funded by AFRL, under AFRL Contract No.
FA8750-20-1-0501 and FA8750-20-C-1021. (b) Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of AFRL.

DISTRIBUTION STATEMENT A: Approved for Public Release; distribu-
tion unlimited AFRL-2021-3478 on 12 October 2021. Other requests shall be
referred to AFRL/RIT 525 Brooks Rd Rome, NY 13441.

connecting their worldwide data centers [8]. Recently, Google
deployed a new-generation SDN controller Orion in their B4
networks and data center Jupiter [9].

While the immense performance gains have been success-
fully demonstrated in wired networks (e.g., data center, back-
bone networks), the extension of SDN to wireless networks
is however rather challenging. The primary reason is that
existing SDN controllers primarily focus on providing services
for distribution abstraction and forwarding abstraction, while
very few efforts have been made for specification abstraction,
where the objective is to provide simplified network models for
mapping abstract specifications to physical operational config-
urations [10]–[12]. As a result, to control wireless networks
with optimized configuration the engineers need to grapple
simultaneously with mathematical modeling, design of (pos-
sibly distributed) numerical algorithms, protocol development
as well as the implementation of the resulting control logic in
hardware. This process is typically tedious and error prone.

In this work we attempt to address the above challenges
by designing OSWireless, a new SDN controller that can
enable self-optimizing software-defined wireless networks. In
a nutshell, OSWireless provides a control plane for optimiz-
ing software-defined wireless networks with automated opti-
mization program generation capabilities, by virtualizing four
control plane functionalities, including intent, mathematical,
algorithmic and forwarding specifications, and providing them
as a service to network engineers. Based on OSWireless, the
network engineers are allowed to specify in a centralized
manner the control intent (i.e., what to do) using the high-
level specification abstraction APIs, while the control intent
can be translated to (possibly distributed) operational control
specifications (i.e., how to do it) following a series of carefully
designed steps.

Towards this goal, we design two new subplanes for the
SDN control plane, i.e., Wireless Network Abstraction Spec-
ification (WiNAS) Subplane and Optimization-as-a-Service
(OaaS) Subplane. The former converts intent specifications
defined using high-level APIs to the corresponding mathe-
matical specifications, and the latter automatically generates
operational algorithmic specifications. We demonstrate and
evaluate OSWireless by deploying it over NeXT, a newly
developed software-defined network emulation and experimen-

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

tation testbed. We showcase both effectiveness and flexibility
of OSWireless in automated generation of control programs
considering different network control problems. The source
code of OSWireless will be released to the community via
GitHub upon paper publication.

The remainder of the paper is organized as follows. We
first discuss the related works in Sec. II. Then we describe the
overall design objective of OSWireless in Sec. III and design
the kernel of OSWireless (i.e., WiNAS Subplane) in Sec. IV
and the OaaS Subplane in Sec. V. The testbed development
and experimental evaluation are presented in Sec. VI. Finally,
we draw the main conclusions and discuss future research
directions in Sec. VII.

II. RELATED WORK

There are a few SDN architectures for wireless networks in
existing literature. For example, in SoftRAN [13], to alleviate
the traffic load pressure of the backhaul network, the central-
ized controller of SoftRAN makes only those decisions that
have network-level influence, while pushing latency-sensitive
local decisions into remote radio head controllers. CellSDN
[14] and MCC-SDWN [15] share the similar split-design-
control-plane principles. Recently O-RAN has emerged to sup-
port interoperation between vendors’ equipment by providing
industry-wide standards for RAN interfaces and to enhance
the RAN performance through virtualized network elements
and integrated intelligence in RAN [16], [17]. Readers are
referred to [18] for an excellent survey of the main results in
this field. Different from these works, which primarily focus on
softwarization of cellular networks, in this work we focus on
the automated generation of distributed optimization programs
in future heterogeneous wireless networks.

Network automation has also attracted significant research
attention [19]–[21]. For example, in [19] the authors develop
a human-intervention-in-the-loop quasi-automated model cal-
ibration scheme for power budget control and site selection
in cellular networks. In [20] Harte et al. design a tool called
“THAWS” to speed-up the development and deployment of
heterogeneous WSNs. The authors of [21] design a toolflow
that can help monitor the correctness of the implementa-
tion throughout the development of wireless sensor networks
(WSN). We are not aware of any existing frameworks that
can provide open flexible APIs for hiding the specification
complexity for optimizing software-defined wireless networks.

The work most related to OSWireless is our prior work
WNOS [22], [23] and its application in cellular [24] and ad
hoc UAV networks [25]. WNOS is an optimization based wire-
less network operating system for principled software-defined
wireless networking. Generally speaking, WNOS shares the
same design goal with OSWireless, i.e., enhancing the au-
tomation of optimizing intent-driven software-defined wireless
networks. In WNOS, the automated decomposition of central-
ized network control programs is enabled by a technique called
Disciplined Instantiation (DI), based which it is complicated
and not very flexible to instantiate abstract network control
problems. In OSWireless we aim to provide a new control

WiNAS
Subplane
(Wireless

Network Abstract
Specification)

PPS Subplane

(Programmable Protocol Stack)

Distribution Abstraction Software

OaaS

Subplane

(Optimization

as a Service)

Intent Specification 1

Control Intent

OSWireless

…

Algorithmic

Specification

Forwarding Processor

Forwarding Algorithms

Forwarding
Decisions

Data

Plane

Control

Plane

Data Plane Virtualization Software

Forwarding

Specification

Mathematical

Specification

Intent Specification 2 Intent Specification 3

Fig. 1: Overall architecture of OSWireless.

plane without relying on DI and hence it is easier to develop
more sophisticated and practical wireless network applications.

III. OVERALL DESIGN OBJECTIVE

The primary goal of OSWireless is to enable intent-driven
wireless networking by hiding the specification complexity
from network engineers. Given a control intent (what to do,
e.g., maximize the network spectral efficiency or minimize the
end-to-end delay), OSWireless aims to determine in an auto-
mated manner the optimal or at least a desirable operational
forwarding strategy (how to do it, e.g., which nodes transmit
with what power in which frequency bands and in which
time slots) that can be executed on the distributed physical
forwarding substrates. Denote Sint and Sfwd as the intent
specification and forwarding specification, respectively. Then
the overall design objective of OSWireless can be expressed
as

f : C(Sint) −→ D(Sfwd), (1)

where f denotes the functionalities provided by OSWireless,
C(·) indicates that Sint is defined in a centralized manner,
and D(·) represents that Sfwd is deployed on distributed
forwarding substrates. Here, Sfwd and Sint represent the two
extremes of network abstraction. By defining Sfwd directly,
i.e., with little or no abstraction, network engineers are allowed
to control all the forwarding details with the most flexibility,
but at the cost of high specification complexity. Alternatively,
network applications can be developed independently to ac-
complish different control intents (i.e., Sint) with only the
highest-level APIs exposed to the network engineers. This can
hide most of the specification complexity but enable limited
reconfiguration flexibility. A natural question to ask is: How to
abstract software-defined wireless networks to achieve a good
tradeoff between low complexity and high flexibility in defining
the control specifications?

Design Approach. In this work, we attempt to answer this
question by designing OSWireless following a three-phase
approach. The objective of the first phase is to specify the
control intent Sint in a centralized manner using the APIs
provided by OSWireless; and then construct the mathematical
representation corresponding to intent specification Sint. Refer
to the output of this phase as Mathematical Specification and

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

denote it as Smath. In the second phase, OSWireless will
generate a set of (possibly distributed) numerical solution
algorithms to solve Smath. Denote the output of this phase
as Algorithmic Specification Salg. Finally, in the third phase
Salg is executed on the distributed physical substrates to obtain
the Forwarding Specification Sfwd at network run time. Then,
the design objective (1) can be rewritten as

f :C(Sint)
Phase−−−−→
(i)

C(Smath)
Phase−−−−→
(ii)

D(Salg)
Phase−−−−→
(iii)

D(Sfwd).(2)

It is worth pointing out that in Phase (iii) we consider dis-
tributed Algorithmic Specification Salg as an example, while
the centralized counterpart can be viewed as a special case.
As illustrated in Fig. 1, in OSWireless these three phases are
accomplished by designing two new subplanes in the control
plane, i.e., WiNAS Subplane and OaaS Subplane.

The rationale behind the three-phase design approach is to
separate those coupled network control processes, including
network modeling, objective formulation as well as distributed
algorithm design, and provide the functionalities in each
process as a service to the other processes. This is similar
to the TCP/IP protocol stack, which separates the network
functionalities into five layers and provides the functionalities
of each layer as a service to the other layers. Differently,
in OSWireless we focus on separating the functionalities for
modeling and optimizing the programmable protocol stack of
software-defined wireless networks. Next, we first describe the
basic design principles of OSWireless, focusing on WiNAS
Subplane and OaaS Subplane in Secs. IV and V, respectively,
and then showcase its application in wireless networks in
Sec. VI.

IV. OSWIRELESS KERNEL DESIGN: WINAS SUBPLANE

The WiNAS subplane is the kernel of OSWireless. Its core
functionalities are two-fold: first, construct the corresponding
mathematical specification Smath given a user-defined control
intent specification Sint, i.e., Phase (i) in (2); and second,
provide various services based on which the other function-
alities of OSWireless are implemented, including the OaaS
Subplane and the mathematical, algorithmic and forwarding
specifications. In OSWireless, these two functionalities are
accomplished by four modules of the WiNAS Subplane, i.e.,
MathSpec Module, NetTopo Module, QoSPara Module and
ParaModel Module. The MathSpec Module is the place where
the mathematical specification will be constructed, while the
other three modules together provide services for the other
components of OSWireless. Next, before describing these
modules, we first define the necessary notations.

A. Notation Definition

In OSWireless, each network component or parameter is
referred to as a Network Element. We further define two types
of network elements: i) A view element is a network element
that can be used to characterize the global view of the network.
Here the global view refers to the graph representation of the
network topology based on vertices (i.e., nodes) and edges

MathSpec Module

Expression
Initialization Tree Representation Model

Expansion

log log

+ log

+ log

+ Preorder Traversal
Element Model
(retrieved from

ParaModel Module)

𝜏௞
ଵ

𝜏௞
ଶ

𝜏௞
ଷ

𝜏௞
ସ

Fig. 2: Diagram of MathSpec Module. Solid and open dots are
respectively, view and behavior elements. Open dots with dotted
outlines denote models of behavior elements

(i.e., links), with each vertex or edge associated to a set of
hardware and radio resources (e.g., antennas, subchannels).
Denote V as the set of view elements involved in a network.
ii) A behavior element is a network element that can be used
to characterize the behaviors of the view elements in V in
terms of various QoS metrics and based on other view and
behavior elements, e.g., noise, capacity and delay. Denote the
set of all behavior elements in the network as B. Further denote
the subset of behavior elements associated to network element
Vi ∈ V as B(Vi). A behavior element Bi ∈ B is called a
leaf behavior element if it cannot be represented as a function
of other behavior elements in B\Bi, e.g., noise, power;
otherwise, it is called an intermediate behavior element, e.g.,
capacity, which is a function of noise and power.

It is worth pointing out that, a behavior element can be
either leaf or intermediate but cannot be both simultaneously
in an intent specification Sint. The type of a specific behavior
element depends on the adopted element model. For example,
the capacity of a link will be viewed as a leaf element
if it is considered as known or can be measured at network
run time. The element models are defined in the ParaModel
Module as described later.

Further define Ti ≜ (Vi, Bi) as a view-behavior element
pair (VBEP) and denote the set of all the possible VBEPs as
T . Then, the intent specification Sint and the corresponding
mathematical specification Smath can be represented based on
a subset of VBEPs in T . The main difference between Sint

and Smath is as follows. In Sint the network behaviors are
characterized mostly based on intermediate behavior elements
without exposing the lower-level details of the coupling among
the behavior elements to the network engineers. Differently,
Smath characterizes network behaviors by formulating math-
ematically the corresponding network control problem by
exposing all the details of the coupling among the involved
behavior elements. The mapping between Sint and Smath is
accomplished by the Mathematical Specification (MathSpec)
Module as described below.

B. Mathematical Specification Module

Given intent specification Sint, the MathSpec Module con-
structs the corresponding mathematical specification Smath

following three steps: Expression Initialization, Tree Repre-
sentation and Model Expansion, as illustrated in Fig. 2.

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

Roughly speaking, each intent specification Sint consists of
a set K of textual expressions. Each expression defines either
the utility or a constraint of the target network control problem,
by referencing to a subset of VBEPs using the APIs provided
by the NetTopo Module (which will be described later in this
section). Denote the set of VBEPs referenced in expression
k ∈ K as Tk ≜ {(T i

k)
Ik
i=1} with T i

k ≜ (V i
k , B

i
k) and Ik being

the number of VBEPs in Tk. Then the objective of the first
step (i.e., expression initialization) is to construct an initial
mathematical representation (denoted as f(Tk)) of the intent
specification Sint. Figure 2 shows an example of f(Tk) with
four VBEPs. If we consider VBEP (link,rate) for T i

k ∈
Tk, where link and rate are respectively view and behavior
elements, then the initial expression f(Tk) can be represented
in this example as

f(Tk) = log(T 1
k) + log(T 2

k) + log(T 3
k) + log(T 4

k)

= log(link1.rate) + log(link2.rate)

+ log(link3.rate) + log(link4.rate). (3)

This defines the sum-log-rate of the four links, a widely
adopted utility function with log introducing proportional
fairness among the links. In OSWireless, this step is accom-
plished by replacing the textual API expressions with the
corresponding VBEPs.

With the initial expression f(Tk), the MathSpec Module
will then construct iteratively an expanded expression to
characterize the mathematical coupling among the involved
behavior elements. To this end, the MathSpec Module needs to
identify the set of VBEPs contained in f(Tk) in each iteration
as the model expansion progresses. In OSWireless, this is
accomplished by converting the textual expression f(Tk) into
a binary tree in each iteration. As illustrated in Fig. 2, each
leaf node of the resulting tree is a VBEP and the other nodes
are mathematical operators. To this end, preorder traversal is
adopted to identify VBEPs. For example, given the initial ex-
pression of f(Tk) in (3), the MathSpec Module will construct
in the first iteration a binary tree with three nodes: operator
“ + ”, leaf nodes log(T1) and log(T2) + log(T3) + log(T4).
Since log(Ti) is not a VBEP, the MathSpec Module further
represents log(Ti) as a tree with operator log and leaf node
T1 (which is a VBEP). The tree representation stops when all
the leaf nodes are VBEPs.

Finally, each of the identified VBEPs is substituted with its
corresponding model defined in the ParaModel Module. The
updated f(Tk) will then be converted to a new binary tree. This
procedure will be repeated until all the behavior elements in
the expression are leaf behavior elements.

C. Kernel Service Provision

Four types of services are provided by the OSWireless
kernel. These are i) definitions of the view and behavior
elements, ii) definitions of the association of behavior elements
to view elements, iii) modeling of the behavior elements, and
iv) operations of the view and behavior elements, such as
getCompExpr(·) and checkVBEP(·). These services

vID() Attr. 1.1, Attr. 1.2, … NetPtr 1.1, NetPtr 1.2, …

bID()

vID() Attr. 2.1, Attr. 2.2, … NetPtr 2.1, NetPtr 2.2, …

vID() Attr. n.1, Attr. n.2, … NetPtr n.1, NetPtr n.2, …

• net_elmt_register()
• net_elmt_conn()
• net_para_loader()
• checkVBEP()
• getCompExpr()

vID() Attr. 3.1, Attr. 3.2, … NetPtr 3.1, NetPtr 3.2, …

OPR

OPR

OPR

OPR

…

…

• ntwk, parent_elmt
• type: node, link, freq, flow …
• layer: app, tspt, net, link, phy
• is_leaf: 0, 1
• …

…

…

…

…

…

…

…

…

elmt_type: link, Attr. 1.1, Attr. 1.2, … MdlPtr

…

bID() elmt_type: link, Attr. 2.1, Attr. 2.2, … MdlPtr

bID() elmt_type: link, Attr. n.1, Attr. n.2, … MdlPtr

ParaPtr

ParaPtr

ParaPtr

ParaPtr

bID() elmt_type: flow, Attr. *.1, Attr. *.2, … MdlPtr

…

bID() elmt_type: flow, Attr. *.1, Attr. *.2, … MdlPtr

bID() elmt_type: flow, Attr. *.1, Attr. *.2, … MdlPtr

…

• ntwk, parent_elmt
• type: node, link, freq, flow …
• layer: app, tspt, net, link, phy
• is_leaf: 0, 1

Default
Model

(EM/SM)

Custom
Model
(EM/SM)

…

Default
Model
(EM/SM)

Custom
Model
(EM/SM)

…

Default
Model
(EM/SM)

Custom
Model
(EM/SM)

…

Capacity

Delay

Packet Loss Rate

…

NetTopo Module

QoSPara Module ParaModel Module

Rv
1

Rv
2

Rv
3

Rv
𝑛

Rb
1

Rb
2

Rb
𝑛

Rb
∗

Rb
∗

Rb
∗

Fig. 3: Diagram of NetTopo, QoSPara and ParaModel modules.
These three modules together provide various kernel services for the
other modules of OSWireless.

are accomplished in three modules, i.e., NetTopo Module,
QoSPara Module and ParaModel Module, as illustrated in
Fig. 3.

The objective of the NetTopo Module is to enable flexible
definition of different types of view and behavior elements,
characterize the coupling among the defined network elements
and further associate them to the corresponding mathematical
models. This module also provides two types of control
interfaces, i.e., internal interfaces among the different modules
of the WiNAS Subplane and external interfaces with the OaaS
Subplane. To this end, the NetTopo Module manages a set of
view records each corresponding to a view element in V refer-
enced by intent specification Sint. Denote the set of the records
as Rv = {Rn

v | n = 1, 2, · · · , Nv}, where Rn
v represents the

nth view record and Nv is the total number of records. As
illustrated in the top block of Fig. 3, Each record Rn

v is a
variable-length tuple, consisting of five categories of fields.
These are vID(Rn

v), which is the OSWireless-wide unique
ID of view element Rn

v ; vAttrList(Rn
v), which comprises

the list of attributes defined for view element Rn
v , such as

the name of the element (vElmtName), the parent view
element that Rn

v is associated with (vPrntElmt), whether
Rn

v is a set or an individual element (vElmtType), among
others; field vNetPtr(Rn

v) consists of a set of pointers,
each pointing to another associated view element R′

v ∈ V ,
e.g., the individual elements that form a set element; Finally,
vBPtr(Rn

v), i.e., field ParaPtr, maintains the set of behavior
elements attached to Rn

v and vOprPtr(Rn
v) defines the set of

the operations supported by Rn
v . It is worth mentioning that

these operations are designed to enable automated expression

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

WiNAS
Subplane

Decomposition Engine AlgoGen Engine

OaaS Subplane

Algorithm
Specification

𝐒alg

View and Behavior Elements

Mathematical
Specification

𝐒math

MathSpec Module
Vertical

Decomposition
Horizontal

Decomposition

Base

Lagrangian Update

Penalization

Layer and HID Info

Decomposition
Detection and
Reformulation

Fig. 4: Overall architecture of Optimization-as-a-Service (OaaS)
Subplane.

initialization and model expansion in the MathSpec Module
(e.g., checkVBEP(.)) and associate the behavior elements
defined in the QoSPara Module to the corresponding behavior
element (e.g., vBElmtLoader(.)).

Similar to NetTopo Module, the QoSPara Module maintains
the set of behavior elements B. Similar to the view records,
each behavior record also consists of an OSWireless-wide
unique ID bID(Rn

b) and an attribute list bAttrList(Rn
b).

Examples of these behavior attributes include bLayer(Rn
b),

which provides the protocol layer information of the behav-
ior elements; and bHID(Rn

b), which defines the node view
element that behavior element Rn

b is associated to. This infor-
mation will be provided to the OaaS Subplane for automated
distributed problem decomposition in Sec. V.

Finally, each behavior record Rn
b ∈ B also has a bMdlPtr

field, i.e., MdlPtr, which is a pointer pointing to the mathemat-
ical model of the behavior element. All the models available to
a behavior element are defined in the ParaModel Module. For
each behavior element, two types of models have been defined
in OSWireless: i) Expression Model (EM), which models a be-
havior element using a closed-form mathematical expression;
and ii) Script Model (SM), which models a behavior element
using a script. Compared to expression models, script models
can provide more flexibility in characterizing the coupling
among different behavior elements and hence are more suitable
for defining more sophisticated network control problems.

V. OAAS SUBPLANE DESIGN

With the mathematical specification Smath obtained by the
WiNAS Subplane in Sec. IV, the OaaS Subplane will construct
in an automated manner a set of numerical solution algorithms
(i.e., the algorithmic specification as illustrated in Fig. 1) that
can be executed on distributed forwarding substrates to solve
Smath. Since the mathematical specification Smath is defined
centrally and possibly across multiple protocol layers, we first
need to decompose Smath into distributed ones. To this end,
we design the OaaS Subplane for decomposition leveraging
the kernel services provided by the WiNAS Subplane. OaaS
Subplane’s architecture is illustrated in Fig. 4, which consists
of two major components, i.e., Decomposition Engine and
AlgoGen Engine.

A. Decomposition Engine

Simply speaking, a given textual expression f can be
decomposed in two steps: i) break down f into a set of

component expressions connected with operator “+”1; and
ii) assign the component expressions into different groups
corresponding to different subproblems. The first step can be
accomplished based on the tree representation service provided
by the WiNAS Subplane as described in Sec. IV-B. Denote
the resulting set of component expressions as Kcomp(f). In
the second step, the component assignment is accomplished
through two types of decomposition: vertical and horizontal
decomposition. The overall decomposition architecture is il-
lustrated in Fig. 4.

The objective of vertical decomposition is to uncouple the
coupling among the protocol layers involved in mathematical
specification Smath. To this end, for each component expres-
sion kcomp ∈ Kcomp(f) its associated layer is obtained using
WiNAS Subplane API bLayer(Rb(kcomp)), where Rb(kcomp)
represents the VBEPs contained in component expression
kcomp. For example, for VBEP (ses, rate), i.e., the
transport-layer transmission rate of a session, the correspond-
ing component expression will be assigned to the transport-
layer subproblem. Denote L as the set of subproblems ob-
tained through vertical decomposition, with each subproblem
involving one protocol layer.

Based on horizontal decomposition, each subproblem in L is
further decomposed into a set of subproblems each associated
to a single node. To this end, we design a new attribute called
horizontal index (HID) for each network element. An HID is
an identifier that can be used to identify the view network
element where another behavior or view element should be
registered and managed at network run time. Each behavior
element is associated with a network view element as its HID
when the behavior element is invoked for the first time during
the construction of the mathematical specification Smath.
By default, the HID will be the parent view element (i.e.,
parent_elmt in QoSPara Module) of the behavior element.
For example, the HID of behavior element link_capacity
will be its parent view element link; the HID of a link
will be the source_node of the link. In horizontal decom-
position, to assign a component expression kcomp ∈ Kcomp(f)
to a distributed problem, we only need to get its HID using
WiNAS Subplane API bHID(kcomp) and further get the HID
of bHID(kcomp). This process is repeated until the HID of the
view element is itself and then component expression kcomp
will be assigned to the corresponding subproblem.

It is worth pointing out that in the above decomposition
process it has been assumed that expression f is decom-
posable. However, this is not always the case in wireless
network modeling and optimization because of the coupled
control variables at different protocol layers and different
nodes. To address this challenge, as illustrated in Fig. 4,
a Decomposability Detection and Reformulation module has
been designed in the OaaS Subplane.

Decomposability Detection and Reformulation. In OS-
Wireless, we determine the decomposability of an expression

1Operator “−” is considered as part of the component expression. For
example, expression x − y will be reformulated as x + (−1) ∗ y before
the tree representation.

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

f by determining the decomposability of its component tree.
As mentioned above, expression f can be represented as a
tree with a set Kcomp(f) of component expressions connected
with operator “+”. Then the decomposability of f depends
on the decomposability of each branch of the tree. This
can be simply accomplished based on the layer checking
service provided by bLayer(Rb(kcomp)) and HID checking
service by bHID(Rb(kcomp)). Take vertical decomposition as
an example. bLayer(·) first detects the behavior elements
in kcomp and then retrieves all the corresponding protocol
layers. If different protocol layers are identified, it means
the component expression is nondecomposable and cannot
be assigned to a subproblem corresponding to any specific
protocol layer. How can we still decompose the mathematical
specification Smath in this case and in an automated manner?

Notice that different decomposition theories can be used
to tackle the decomposability problem, such as dual decom-
position, primal decomposition, hybrid decomposition and
hierarchical decomposition as well as indirect decomposition.
However, it is by no means easy to automate the decom-
position based on these theories because they all require
rather complicated expertise-based analysis and reformulation
of the specification expressions. In this work, by designing
the OaaS Subplane we hope to provide the first-of-its-kind
framework for automating the decomposition of centralized
network control problems based on certain decomposition
theories.

Next we describe the design logic of the OaaS Subplane
considering indirect decomposition and dual decomposition
as examples, while the design can also be extended to other
decomposition theories. Roughly speaking, a specification ex-
pression can be decomposed based on indirect decomposition
by introducing auxiliary variables to i) uncouple the coupling
among the variables in a nondecomposable expression and
ii) coordinate the optimization of the resulting subproblems.
Consider a toy example of the queuing delay model. If the
M/M/1 model is considered, the average response time can be
expressed as a function of the link capacity and the source rate,
i.e., 1

link_capacity−src_rate . Here, the model is defined for
link_capacity > src_rate, otherwise the average de-
lay hence the response time will become infinity. This expres-
sion is not directly decomposable since link_capacity
and src_rate operate at different protocol layers (physical
and transport, respectively), and the expression will be viewed
as a single branch in the tree representation process. Based
on indirect decomposition, the auxiliary variable vaux will
be introduced along with a decomposable equality constraint
vaux == link_capacity − src_rate. Another exam-
ple of an auxiliary variable is the Lagrangian coefficient,
which can be introduced in dual decomposition to absorb the
constraints into the utility function. Technically speaking, an
auxiliary variable can be assigned arbitrarily to one of the
involved protocol layers in the case of a tie. In OSWireless, the
rules for auxiliary variable introduction and their assignment
to different protocol layers are defined in the Decomposition
Detection and Reformulation Module (i.e., this module) and in

the behavior element models in ParaModel Module. We omit
the details of these rules due to space limitations.

B. AlgoGen Engine

Recall from (2) that the output of Phase (ii) is the distributed
algorithmic specification Salg. In the OaaS Subplane, this is
accomplished by further generating automatically numerical
solution algorithms to solve each of the subproblems obtained
above. As shown in Fig. 4, three types of algorithms will
be generated, namely the base optimization algorithm, the
vertical signaling algorithm and the horizontal penalization
algorithm.

A set of numerical algorithm templates have been designed
in the AlgoGen Engine for base algorithm construction. Each
template defines the formats for the optimization variables,
the signaling parameters and the penalization terms. To this
end, we define the algorithm templates based on CogApp, an
open-source content generator for executing Python snippets in
source files [26]. To construct the base algorithm, we first de-
tect the optimization variables present in each of the distributed
problems obtained in Sec. V-A and substitute the detected vari-
ables into the algorithm template. The optimization variables
are specified in intent specification Sint, and the corresponding
information is stored in the behavior element in the QoSPara
Module of the WiNAS Subplane and can be retrieved using
WiNAS API bVar(·) when constructing the base algorithm.
Both scalar (i.e., |Vopt| = 1) and vector (i.e., |Vopt| > 1)
variables can be supported by the AlgoGen Engine, where Vopt

denotes the variables detected in the subproblem. The vertical
signaling parameters can be detected and substituted into the
algorithm template similarly. For example, if dual decompo-
sition is considered, the vertical signaling parameters are the
Lagrangian coefficients introduced when constructing the dual
expression of the original expression. These parameters can be
updated at network run time by a projected linear operation
derived based on the corresponding constraint expression and
then exchanged among the corresponding subproblems.

The base algorithms are designed to optimize a modified
version of the original utility in each of the generated dis-
tributed subproblems. To this end, a penalization term is in-
corporated to the utility function to prevent a distributed node
from hurting other nodes too much. The automated generation
of the penalization terms is accomplished by converting the
textual expression into the symbolic domain [27].

VI. OSWIRELESS-BASED WIRELESS NETWORK CONTROL

In this section we aim to i) showcase how OSWireless can
be used to hide the specification complexity by converting
automatically a given control intent (what to do) to opera-
tional control programs (how to do it); and ii) understand
how effective the automatically generated control programs
are at network run time. To this end we conduct a series
of experiments over the NeXT testbed considering network
control problems at different protocol layers.

Testbed Development. A snapshot of the NeXT testbed
is shown in Fig. 5. There are three major components in the

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

PDU

OSWireless

OSWireless Kernel: WiNAS Subplane

SDR Frontends of NeXT Testbed

OaaS Subplane

Int-1:
PowRate_ThrptMax

Intent Specification

…

Northbound API MathSpec Module

Southbound API

NetTopo
Module

QoSPara
Module

ParaModel
Module

Indirect Decomposition

Symbolic Computing

Switch

Int-2:
PowRate_DlyMin

Int-3:
Mob_Mov_ThrptMax

Dual Decomposition

Decomposition by Partial
Linearization

Edge Server

USRP SDRs

Switch

PDU

Fig. 5: Snapshot of the software-defined testbed and software diagram for OSWireless prototyping.

SESSION 1 SESSION 2# NODE INDEX

5

1 2

6

3

7

4

8

D-Link Switch

Power Distribution
Unit

TP-Link
Router

SCENARIO 1 SCENARIO 2 SCENARIO 3

Fig. 6: Network topology for OSWireless testing over NeXT testbed.

NeXT testbed: edge server, front-end SDR, and programmable
protocol stack. The edge server consists of five Dell EMC
R340 poweredge workstations, each with Intel Xeon E-2246G
3.6 GHz CPU and Ubuntu v18.04. The front-end SDR consists
of 20 N210 USRPs and is powered by three CyberPower
PDU41001 Switched Power Distribution Units (PDU). The
PDUs have been deployed to enable remote experimentation
over the testbed during the COVID-19 pandemic and further
share the testbed with the community.2 The edge servers and
the front-end SDRs are connected using two switches with
Gigabit Ethernet cables.

A programmable protocol stack has been developed operat-
ing over the software radio forwarding substrates. Each node
can be programmed to transmit with bpsk, qpsk, GMSK, or
other modulation schemes, based on Reed Solomon Code for
forward error correction with coding rate ranging from 0.14
to 0.30 at step of 0.02, and at transmission power that can be
adapted on the fly by controlling the transmit gain of the FPGA
of the USRP SDRs. The packet length is set to 1000 bytes and
the retransmission limit is set to 10 at each link; the lower and
higher packet error rate thresholds are set respectively as 0.05
and 0.15 for triggering the coding rate reconfiguration. TCP
Vegas has been implemented for transport-layer congestion
control with data rate ranging from 1-200 kbps. The available
spectrum band (2-2.6 GHz) is divided into three subchannels
and shared by different nodes with configurable spectrum reuse
factor.

Finally, we prototype OSWireless and deploy it on one
of the workstations as indicated by the yellow rectangle in
Fig. 5, including the WiNAS Subplane (Sec. IV) and the

2Currently we are extending the NeXT testbed to enable experiments for
integrated aerial-ground wireless networks and make the testbed publicly
accessible by interfacing it with a public cloud Amazon Web Service (AWS).

OaaS Subplane (Sec. V). For the SDR data plane, the other
workstations serve as the controlling hosts of the front-end
SDRs for baseband signal processing and run the distributed
control programs automatically generated by OSWireless to
adapt the transmission parameters at different layers of the pro-
grammable protocol stack. Based on the kernel APIs provided
the WiNAS Subplane, we prototype the OaaS Subplane by
automating a set of widely adopted decomposition techniques
for demonstration purpose, including dual decomposition, in-
direct decomposition and decomposition by partial lineariza-
tion, while OSWireless can also be extended to incorporate
other decomposition techniques. The symbolic mathematical
operations required by the decomposition automation has been
based on open-source symbolic computing library SymPy
[28]. Based on the OSWireless prototype, next we conduct
a series of experiments to test the effectiveness and flexibility
of OSWireless in hiding the specification complexity for
software-defined wireless networks.

Intent Specification Example. In the first experiment, we
consider network scenarios of device-to-device (D2D) com-
munications, an important technique that can enable a wide
set of new applications, such as sensor and actuator networks
[29], [30], vehicular networks [31], [32], and wireless backhaul
networks [33]. In this work, we consider three scenarios as
shown in Fig. 6. In each scenario, two source nodes commu-
nicate with their destination nodes via a set of relay nodes. The
available subchannels are assigned to the nodes with spectrum
reuse factor of 1/2. The control objective in this scenario is to
maximize the sum end-to-end throughput of the two sessions
by jointly controlling the transmission power of the nodes
at the physical layer and source rate at the transport layer,
subject to proportional fairness between the two sessions. We
refer to this scenario as MSMH PowRate ThrptMax, where
the first field (MSMH) represents the multi-session multi-
hop network topology, the second field indicates the control
variables, and the last field is the control objective. The same
naming convention will be adopted for the other scenarios for
easier source code sharing in the future. Next we first showcase
how to define the intent specification based on the kernel APIs
provided by OSWireless.

In this experiment, the network behavior description, in-

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

0 50 100 150 200 250
Time (s)

0

1

2

3

4

5

6

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
pk

ts
/s

)

No Optimization (Average of Session 1 and 2)
Optimized Session 1
Optimized Session 2

216%
higher

140%
higher

116%
higher

176%
higher

(a) (b)
Fig. 8: (a) Single-run running average and (b) multi-run average
end-to-end throughput achieved by OSWireless generated control
programs for MSMH PowRate ThrptMax.

cluding the specification of the network utility, constraints
and control variables, can be accomplished by referring to
three types of behavior elements and their associated view el-
ements using the APIs. These behavior elements are ssrate
(source rate of a session), lkcap (link capacity) and lkpwr
(transmission power for a link). Notice that there is no
need to specify explicitly the low-level coupling among these
view elements, e.g., the mathematical model of lkcap as a
function of lkpwr, or their association to different protocol
layers. Instead, this coupling will be integrated to the initial
expression defined by the intent specification through the
expression expansion operation in the MathSpec Module (see
Fig. 2). After specifying utility and constraints, the operational
distributed optimization algorithms can be automatically gen-
erated by simply calling the following three lines of code:
1. vdcp = xlydcp.ncp_xlayer_decomp(nt_ctl),
2. hdcp = dstdcp.ncp_dist_decomp(vdcp),
3. ag.alg_gen(hdcp),
where nt_ctl (line 1) stores the centralized intent specifica-
tion; vdcp and hdcp are the specifications after vertical (line
1) and horizontal (line 2) decomposition, respectively; line 3
generates the operational optimization algorithms. We omit the
details of the generated algorithms due to lack of space.

Figure 8 shows the end-to-end throughput performance of
the control programs automatically generated by OSWireless.
The instantaneous throughput is reported in Fig. 8 (a) con-
sidering Scenario 1 (see Fig. 6) as an example. It can be
seen that significant throughput gain (around 300%) can be
achieved compared to the benchmark scheme (Benchmark 1),
based on which the hardware transmit gain of the USRP SDRs
is set to 15 dB (the middle of the range) and no rate or power
adaptations are considered. The average performance is plotted
in Fig. 8 (b) for the three scenarios by averaging over 10
experiments. Three more benchmark schemes are considered
in addition to that in Fig. 8 (a). These are Benchmark 2: maxi-
mum hardware transmit gain for the USRP SDRs (25 dB) and
maximum source rate; Benchmark 3: fixed transmission power
(15 dB) with adaptive source rate; and Benchmark 4: power
adaptation subject to the target end-to-end throughput. It can
be seen that OSWireless outperforms all the four benchmark
schemes, which validates the effectiveness of automatically-
generated control programs.

It is worth pointing out that the centralized high-level

5x lower

3.5x lower

2.5x lower

Throughput Threshold for Session 1

Throughput Threshold for Session 2

(a) (b)

Fig. 9: (a) Average end-to-end delay and (b) instantaneous transmis-
sion rate.

specification is all that is needed for OSWireless to generate
the operational distributed cross-layer control programs for
MSMH PowRate ThrptMax, while all the specification com-
plexity of the mathematical specification and algorithmic spec-
ification will be orchestrated by OSWireless in an automated
manner and hidden from the developers.

Flexibility of OSWireless. In the above experiment we
have showcased through an example the operation of OSWire-
less, including intent specification, automated generation of
the corresponding mathematical specification as well as the
effectiveness of the resulting distributed control programs. In
that example, the control variables ssrate and lkpwr are
only loosely coupled through the network flow conservation
constraint for each link and hence can be decoupled vertically
after constructing the corresponding dual problem of the
mathematical specification. In the following experiments, we
further test the flexibility of OSWireless in control intent
definition considering more sophisticated control problems.

In this experiment, referred to as MSMH PwrRate DlyMin,
the control objective is to minimize the average end-to-end
delay of concurrent sessions in a multi-session multi-hop
network, by jointly controlling the source rate at the transport
layer and transmission power of the nodes at the physical
layer under minimum end-to-end throughput constraints for
each session. The M/M/1 queuing model [34] is considered
for each session. In this case, the session rate ssrate and
link capacity lkcap (hence the transmission power lkpwr)
are closely coupled in the utility function through the queuing
model - they both appear in the denominator of the model

1
lkcap(lkpwr)−ssrate , and the resulting mathematical specifi-
cation cannot be decomposed directly.

Fortunately, OSWireless can hide most of the specification
complexity. Specifically, network engineer only needs to define
the control intent by simply calling the model installation
API provided by the OSWireless kernel WiNAS Subplane:
“nt.install_model(sess, ssdelay, mm1)”,
where sess, ssdelay and mm1 are respectively the
view element, behavior element and the parameter model
defined in the NetTopo, QoSPara and ParaModel modules
of the WiNAS Subplane. Then, as described in Sec. V-A,
the resulting mathematical specification will be analyzed
for decomposability, reformulated by introducing auxiliary
vertical signaling variables to uncouple the coupling between

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

lkpwr and ssrate in the queuing model, and finally
decompose the obtained network control problem based on
indirect decomposition.

The delay performance of the obtained algorithmic specifi-
cation is reported in Fig. 9. In this experiment, we consider
low-data-rate applications with the target end-to-end through-
put set to 1.5 pkts/s and 3 pkts/s for the two sessions,
respectively, as shown in Fig. 9 (b). In Fig. 9 (a) we plot
the normalized delay of the two sessions for OSWireless and
compare it with three benchamrk schemes: benchmarks 1, 2
and 3 in Experiment 1 but tailored for this experiment. We
can see that OSWireless can achieve up to 5× lower delay.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have designed OSWireless, a new control
plane for optimizing software-defined wireless networks with
automated control program generation capabilities. We verified
experimentally the effectiveness and flexibility of OSWireless
in hiding specification complexity. We believe OSWireless can
provide a new approach to hiding the specification complexity
for optimizing software-defined wireless networks and hence
accelerate the research towards zero-touch programmable net-
works. In future work we will i) incorporate AI/ML-based
data-driven network control in OSWireless and further design
specification APIs to enable automated control with inte-
grated optimization and learning; ii) test the effectiveness and
flexibility of OSWireless considering wireless networks with
standards-compliant radio interfaces, such as 5G based swarm
UAV networks [35]; and iii) standardize the interfaces among
different OSWireless modules to allow third-party theoretical
researchers, system engineers and field operation engineers to
collaborate within the framework of OSWireless.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communications Review,
vol. 38, no. 2, pp. 69–74, March 2008.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for
Traffic Engineering in SDN-OpenFlow Networks,” Computer Network
(Elsevier) Journal, vol. 71, pp. 1–30, Oct. 2014.

[3] I. T. Haque and N. Abu-Ghazaleh, “Wireless Software Defined Net-
working: A Survey and Taxonomy,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 4, pp. 2713–2737, Fourthquarter 2016.

[4] W. Wang, Y. Chen, Q. Zhang, and T. Jiang, “A Software-Defined
Wireless Networking Enabled Spectrum Management Architecture,”
IEEE Communications Magazine, vol. 54, no. 1, pp. 33–39, Jan. 2017.

[5] M. Ambrosin et al., “LineSwitch: Tackling Control Plane Saturation
Attacks in Software-Defined Networking,” IEEE/ACM Transactions on
Networking, vol. 25, no. 3, pp. 1206–1219, April 2017.

[6] A. Montazerolghaem et al., “OpenSIP: Toward Software-Defined SIP
Networking,” IEEE Transactions on Network and Service Management,
vol. 15, no. 1, pp. 184–199, March 2018.

[7] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
Defined WSN Management System for IoT Applications,” IEEE Systems
Journal, vol. 2, no. 3, pp. 2074–2081, Sept. 2018.

[8] S. Jain et al., “B4: Experience With a Globally-Deployed Software
Defined WAN,” in Proc. of the ACM SIGCOMM, Hong Kong, China,
Aug. 2013.

[9] A. D. Ferguson et al., “Orion: Google’s Software-Defined Networking
Control Plane,” in Proc of the USENIX NSDI, April 2021.

[10] Open Networking Foundation, “OpenFlow Switch Specification,” Oct.
2013.

[11] D. E. Sarmiento, A. Lebre, L. Nussbaum, and A. Chari, “Decentralized
SDN Control Plane for a Distributed Cloud-Edge Infrastructure: A
Survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1,
pp. 256–281, First Quarter 2021.

[12] M. Priyadarsini and P. Bera, “Software Defined Networking Architec-
ture, Traffic Management, Security, and Placement: A Survey,” Com-
puter Networks (Elsevier), vol. 192, June 2021.

[13] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
Defined Radio Access Network,” in Proc. of HotSDN, Hong Kong,
China, Aug. 2013.

[14] L. E. Li, Z. M. Mao, and J. Rexford, “Toward Software-Defined
Cellular Networks,” in Proc. of European Workshop on Software Defined
Networking (EWSDN), Darmstadt, Germany, Oct. 2012.

[15] B. Cao, Y. Li, C. Wang, G. Feng, S. Qin, and Y. Zhou, “Resource
Allocation in Software Defined Wireless Networks,” IEEE Network,
vol. 31, no. 1, pp. 44–51, Jan./Feb. 2017.

[16] Open RAN Alliance, “O-RAN: Towards an Open and Smart RAN,”
white paper, October, 2018.

[17] S. Niknam et al., “Intelligent O-RAN for Beyond 5G and 6G
Wireless Networks,” arXiv.org, May 2020. [Online]. Available:
https://arxiv.org/pdf/2005.08374.pdf

[18] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art and the
Road Ahead,” Computer Networks, vol. 182, pp. 1–28, Dec. 2020.

[19] G. Hampel et al., “The New Paradigm for Wireless Network Optimiza-
tion: A Synergy of Automated Processes and Human Intervention,” IEEE
Communications Magazine, vol. 43, no. 3, pp. S14–S21, March 2005.

[20] S. Harte, E. Popovici, B. O’Flynn, and C. O’Mathúna, “THAWS:
Automated Design and Deployment of Heterogeneous Wireless Sensor
Networks,” WSEAS Transactions on Circuits and Systems archive, vol. 7,
pp. 829–838, September 2008.

[21] J. Beutel et al., “Automated Wireless Sensor Network Testing,” in Proc.
of International Conference on Networked Sensing Systems, Braun-
schweig, Germany, June 2007.

[22] Z. Guan, L. Bertizzolo, E. Demirors, and T. Melodia, “WNOS: An
Optimization-based Wireless Network Operating System,” in Proc. of
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Los Angeles, USA, June 2018.

[23] ——, “WNOS: Enabling Principled Software-Defined Wireless Net-
working,” IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp.
1391–1407, June 2021.

[24] L. Bonati et al., “CellOS: Zero-touch Softwarized Open Cellular Net-
works,” Computer Networks (COMNET), vol. 180, Oct. 2020.

[25] L. Bertizzolo et al., “SwarmControl: An Automated Distributed Control
Framework for Self-Optimizing Drone Networks,” in Proc. of IEEE
INFOCOM, Toronto, Canada, July 2020.

[26] https://pypi.python.org/pypi/cogapp, 2019.
[27] B. Buchberger, “Symbolic Computation (An Editorial),” Journal of

Symbolic Computation, pp. 1–6, 1985.
[28] https://www.sympy.org/en/index.html, 2021.
[29] A. Badi and I. Mahgoub, “ReapIoT: Reliable, Energy-Aware Network

Protocol for Large-Scale Internet-of-Things (IoT) Applications,” IEEE
Internet of Things Journal, vol. 8, no. 17, pp. 13 582–13 592, Sept. 2021.

[30] M. La Manna, P. Perazzo, and G. Dini, “SEA-BREW: A scalable
Attribute-Based Encryption revocable scheme for low-bitrate IoT wire-
less networks,” Journal of Information Security and Applications,
vol. 58, p. 102692, May 2021.

[31] L. Zhao et al., “SPIDER: A Social Computing Inspired Predictive Rout-
ing Scheme for Softwarized Vehicular Networks,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–12, Oct. 2021.

[32] H. Zeng et al., “VehCom: Delay-Guaranteed Message Broadcast for
Large-Scale Vehicular Networks,” IEEE Transactions on Wireless Com-
munications, vol. 20, no. 6, pp. 3883–3896, June 2021.

[33] R. K. Sheshadri, E. Chai, K. Sundaresan, and S. Rangarajan, “SkyHaul:
An Autonomous Gigabit Network Fabric in the Sky,” arXiv:2006.11307,
2020. [Online]. Available: https://arxiv.org/abs/2006.11307

[34] D. Bertsekas and R. Gallager, Data Networks. USA: Prentice Hall,
2000.

[35] Z. Guan, N. Cen, T. Melodia, and S. Pudlewski, “Joint Power, Asso-
ciation and Flight Control for Massive-MIMO Self-Organizing Flying
Drones,” IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp.
1491–1505, August 2020.

This paper has been accepted for publication on IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver, Colorado, October 2022

