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ABSTRACT

This article investigates the basic design principles for a new Wire-

less Network Operating System (WNOS), a radically different ap-

proach to software-defined networking (SDN) for infrastructure-less

wireless networks. Departing from well-understood approaches in-

spired by OpenFlow, WNOS provides the network designer with an

abstraction hiding (i) the lower-level details of the wireless proto-

col stack and (ii) the distributed nature of the network operations.

Based on this abstract representation, the WNOS takes network

control programs written on a centralized, high-level view of the

network and automatically generates distributed cross-layer con-

trol programs based on distributed optimization theory that are

executed by each individual node on an abstract representation of

the radio hardware.

We first discuss themain architectural principles ofWNOS. Then,

we discuss a new approach to automatically generate solution al-

gorithms for each of the resulting subproblems in an automated

fashion. Finally, we illustrate a prototype implementation of WNOS

on software-defined radio devices and test its effectiveness by con-

sidering specific cross-layer control problems. Experimental results

indicate that, based on the automatically generated distributed con-

trol programs, WNOS achieves 18%, 56% and 80.4% utility gain in

networks with low, medium and high levels of interference; maybe

more importantly, we illustrate how the global network behavior

can be controlled by modifying a few lines of code on a centralized

abstraction.
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1 INTRODUCTION
Most existing wireless networks are inherently hardware-based and

rely on closed and inflexible architectures that delay adoption of new

wireless networking technologies. Moreover, it is very challeng-

ing to control large-scale networks of heterogeneous devices with

diverse capabilities and hardware. Quite the opposite, software-

defined radios provide a vast degree of flexibility. At the same

time, software radios today lack appropriate abstractions to enable

prototyping of complex networking applications able to leverage

the cross-layer interactions that characterize wireless operations.

To use an analogy from computer systems, trying to build a com-

plex networked application on software radios is today as hard as

trying to build a complex piece of enterprise software by writing

bare-metal code in a low-level programming language.

There has been no lack of efforts trying to define new network-

ing abstractions in recent years. The notion of software defined

networking (SDN) has been introduced to simplify network control

and to make it easier to introduce and deploy new applications and

services as compared to classical hardware-dependent approaches

[1–3]. The main ideas are (i) to separate the data plane from the

control plane (an idea that in different form was already pervasive

in the cellular industry); and more importantly (ii) to “control” the

network behavior through a centralized programmatic network

abstraction. This simplifies the definition of new network control

functionalities, which are now defined based on an abstract and

centralized representation of the network.

So far, most SDN work has concentrated on “softwarization”

of routing for commercial infrastructure-based wired networks,

with some recent work addressing wireless networks [1, 2, 4–6].

However, applications of software-defined networking concepts to

infrastructure-less wireless networks (i.e., tactical ad hoc networks,

mesh, sensor networks, D2D, IoT) are substantially unexplored. This

is not without a reason. Essentially, distributed control problems

in wireless networks are complex and hard to separate into basic,

isolated functionalities (i.e., layers in traditional networking archi-

tectures). Typical control problems in wireless networks involve

making resource allocation decisions at multiple layers of the net-

work protocol stack that are inherently and tightly coupled because

of the shared wireless radio transmission medium; conversely, in

software-defined commercial wired networks one can concentrate

on routing at the network layer in isolation. Moreover, in most

current instantiations of this idea, SDN is realized by (i) remov-

ing control decisions from the hardware, e.g., switches, (ii) by en-

abling hardware (e.g., switches, routers) to be remotely programmed

through an open and standardized interface, e.g., OpenFlow [1],

and (iii) by relying on a centralized network controller to define the

behavior and operation of the network forwarding infrastructure.

This unavoidably requires a high-speed backhaul infrastructure to
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Figure 1: Architecture of the wireless network operating system.

connect the edge nodes with the centralized network controller,

which is typically not available in wireless networks where net-

work nodes need to make distributed, optimal, cross-layer control

decisions at all layers to maximize the network performance while

keeping the network scalable, reliable, and easy to deploy [7–10].

Clearly, these problems, which are specific to wireless, cannot be

solved with existing SDN approaches.

New Approach to Wireless SDN. For these reasons, in this

paper we propose and explore a new approach to software-defined

networking for wireless networks. At the core, we attempt to an-

swer the following question: is it possible to automatically gener-

ate distributed wireless network control programs that are defined

based on a centralized abstraction of the network that hides low-

level implementation details; and in this way bridge the gap be-

tween software defined networking and distributed network opti-

mization/control? Can we, in this way, keep the benefits of dis-

tributed network control (where decisions are taken close to the

network/channel/interference state without the need for collect-

ing information at a centralized decision making point); and at the

same time be able to define the network behavior based on a central-

ized abstraction? Can we, by answering these questions, develop a

principled approach to software-defined wireless networking based

on cross-layer optimization theory? We attempt to provide a pre-

liminary answer to these compelling questions by studying the

core building principles of a Wireless Network Operating System

(WNOS). Similar to a computer operating system, which provides

the programmer with an abstraction of the underlying machine

that hides the lower level hardware operations (e.g., its parallel

nature in multi-core systems) and exposes only critical function-

alities, WNOS provides the network designer with an abstraction

hiding the lower-level details of the network operations. Maybe

more importantly, WNOS hides the details of the distributed im-

plementation of the network control operations, and provides the

network designer with a centralized view abstracting the network

functionalities at a high level. Based on this abstract representa-

tion, WNOS takes centralized network control programs written

on a centralized, high-level view of the network and automatically

generates distributed cross-layer control programs based on dis-

tributed optimization theory that are executed by each individual

node on an abstract representation of the radio hardware. This pa-

per takes a decisive step in this direction and claims the following

contributions:
• WNOS Architecture Design. We propose an architecture for

WNOS by defining three key components: network abstrac-

tion, automated network control problem decomposition,

and programmable protocol stack.

• Network Abstraction. We propose a new wireless network

abstraction framework WiNAR - inspired by the language

of network utility maximization (NUM), based on which

network designers can characterize diverse desired network

behaviors before actual deployment.

• Automated Decomposition. We propose the notion of disci-

plined instantiation, based on which user-defined abstract

centralized network control problems can be decomposed

into a set of distributed subproblems in an automated fash-

ion. Distributed control programs regulate the behavior of

each involved node to obtain the desired centralized behavior

in the presence of time-varying local conditions (including

channel, traffic, etc.).

• WNOS Prototyping and Testbed Evaluation. We outline the

design of a WNOS prototype that implements the proposed

network abstraction and automated decomposition and so-

lution algorithm generation approach, as well as a newly

designed general purpose programmable protocol stack (PPS)

that covers all protocol layers. Based on the PPS, a multi-hop

wireless ad hoc network testbed is developed using software-

defined radios to provide a proof of concept of the WNOS.

The remainder of the paper is organized as follows. In Section 2,

we present the design architecture of WNOS, and then describe the

network abstraction framework WiNAR in Section 3. We discuss

the automated network control problem decomposition approach in

Section 4, and present the prototyping and experimental evaluation

of WNOS in Section 5. We discuss limitations and future work in

Section 6, and finally we draw the main conclusions in Section 7.

2 WNOS ARCHITECTURE

The architecture of the proposed wireless network operating sys-

tem (WNOS) is illustrated in Fig. 1. At a high level, the WNOS
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comprises three key components: network abstraction, network

control problem decomposition, and PPS.

Network Abstraction. This is the interface through which the

network designer can define the network control problem to achieve

certain application-specific objectives. Two core functionalities are

provided by this component, that is, network behavior character-

ization and centralized network control problem definition. WNOS

provides the designer with a rich set of network abstraction APIs

through which the designer can characterize at a high-level the

desired network behavior. Through the API, the designer can define

various network control objectives, such as throughput maximiza-

tion, energy efficiency maximization, delay minimization, or their

combinations; can impose different constraints on the underlying

physical network, such as themaximum transmission power of each

node, available spectrum bandwidth, maximum end-to-end delay,

among others. Importantly, to define a network control problem,

the designer does not have to consider all implementation details

of the networking protocol stack. That is, the designer can select

different templates of network protocols, which are programmable

with parameters that can be optimized in real time, such as deter-

ministic scheduling vs stochastic scheduling, proactive routing vs

reactive routing vs hybrid routing, delay-based vs packet-loss-based

congestion control, among others.

It is worth pointing out that the network designer does not

need to control protocol parameters manually. Instead, the parame-

ters are optimized by WNOS through automatically generated dis-

tributed algorithms. These control objectives, network constraints,

and selected protocol templates together serve as the input of the

network control problem definition. Then, given a network control

problem defined at a high-level, a mathematical representation of

the underlying centralized network utility maximization problem is

constructed by parsing the network abstraction functions. Details

of the network abstraction design will be discussed in Section 3.

Network Control Problem Decomposition. The resulting

centralized network control problem, which characterizes the be-

havior of the wireless network, is then decomposed into a set of

distributed sub-problems, each characterizing the local behavior,

e.g., a single session or a single node. To this end, WNOS first

determines a decomposition approach based on the mathemati-

cal structure of the network control problem, including whether

the problem involves one or multiple sessions, what protocol lay-

ers are to be optimized, if the problem is convex or not, among

others. Different decomposition approaches can lead to different

structures of the resulting distributed control program with various

convergence properties, communication overhead, and achievable

network performance [11, 12].

Through vertical decomposition, a centralized network control

problem can be decomposed into subproblems each involving a

single or subset of protocol layers, while through horizontal decom-

position each of the resulting subproblems involves local function-

alities of a single session or node device. Different decomposition

approaches can be jointly and iteratively applied if the centralized

network control problem involves multiple concurrent sessions

and cross-layer optimization of multiple protocol layers. For each

of the resulting subproblems, a numerical solution algorithm (e.g.,

interior-point method) is then selected to solve the problem. Dif-

ferent distributed solution algorithms interact with each other by

updating and passing a common set of optimization variables. See

Section 4 for details of the decomposition approach.

Programmable Protocol Stack (PPS). For each of the result-

ing distributed network control problems, a numerical solution

algorithm is selected to solve the optimization problem. This is

executed in real time and the obtained optimization results are

used to configure the control parameters of a PPS on each local

network device to adapt to the dynamic networking environments.

The PPS provides abstractions and building blocks necessary to

prototype complex cross-layer protocols based on a high level, ab-

stract representation of the software radio platform without hiding,

and instead while retaining control of, implementation details at

all layers of the protocol stack and while maintaining platform

independence [13, 14]. The control interface between the PPS and

the distributed solution algorithms is defined so that (i) the solution

algorithm can retrieve network status information from the regis-

ter plane of the PPS, such as noise and interference power level,

queue status, available spectrum band, among others, and then use

the retrieved information as input parameters of the distributed

optimization problems; and (ii) based on the optimized solutions,

the programmable protocol stack is able to configure in an on-line

fashion the parameters of the adopted protocol stack via its decision

engine in the decision plane, e.g., update the modulation scheme

based on the optimized transmission power hence SINR, configure

the TCP window size based on the optimized application-layer rate

injected into the network.

3 NETWORK ABSTRACTION: WINAR

The objective of the network abstraction WiNAR is to provide net-

work designers with an interface to characterize network behaviors

at a high and centralized level. This goal is however not easy to

accomplish because of the following main challenges.

Challenge 1: Pre-deployment network abstraction. Unlike tradi-

tional network abstraction and resource virtualization [15, 16],

where the objective is to abstract or virtualize networks at one

or two protocol layers at run time with fixed network topology

and known global network information, in our case run-time in-

formation is not available in the design phase. For example, the

available links that can be used by a session, the neighbors or inter-

ferers of a node, among others are not known a-priori. Therefore,

the challenge is to abstract the wireless network before actual de-

ployment by taking run-time uncertainties at all protocol layers

into consideration, including time-varying wireless channels, inter-

ference coupling among nodes, network topology and traffic load

variations, among others.

Challenge 2: Multi-role network element. A physical network en-

tity may serve in different roles in the network. For example, a node

can be the source or destination of a session, the transmitter, relay

or receiver of a link, the neighbor of other nodes, a head of a cluster,

a member of the whole network, among others. The network ab-

straction needs to allow designers to characterize network element

behaviors with respect to heterogeneous roles while controlling

the same physical network entity.

To address these challenges, elements in WNOS are represented

following a three-fold abstraction, i.e., network representation, con-

trol interface and control problem definition.
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Network Representation. The network abstraction represents

different network entities as two categories of network elements,

i.e., Primitive Element and Virtual Element, defined as follows.
Definition 3.1 (Primitive Element). A primitive element is a net-

work element that represents an individual determined network en-

tity. Two criteria need to be satisfied for each primitive element A:

• |{Network entities represented by A}| = 1 with | · | being

the cardinality of a set, i.e., there exists a one-to-one map-

ping between any primitive element and a physical network

entity.

• For any time instants t1 � t2, A(t1) = A(t2) always holds,
i.e., the one-to-one mapping does not change with time.

Examples of primitive elements include Node , Link , Session, Link
Capacity and Session Rate , among others.1

Definition 3.2 (Virtual Element). A virtual element represents an

undetermined set of network entities, i.e., cannot be mapped to

a deterministic set of primitive elements other than at runtime A

virtual elementV satisfies

• |{Network entities represented by V}| ≥ 1, i.e., each vir-

tual element is mapped to physical network entities in a

one-to-many manner.

• V = V(t), i.e., the set of network entities represented by

each virtual element is a function of the network run time t .

Examples of virtual element include Neiдhbors o f Node (the set
of neighbors of a node), Links o f Session (the set of links used by

a session), Sessions o f Link (the set of sessions sharing the same

link), among others. The members of a virtual element are primitive

elements, e.g., each member of virtual element Links o f Session is

a primitive element Link .
Then, a wireless network can be characterized using a set of prim-

itive and virtual network elements as well as the cross-dependency

among the elements, which is formalized in Definition 3.3.

Definition 3.3 (Network). With primitive elementsAm ,Am′ and

virtual elementsVn ,Vn′ , a network Net can be represented as

Net = {Am ,Vn , I (Am ,Am′ ), I (Vn ,Vn′ ), I (Am ,Vn )

m,m′ ∈ MA,m �m
′,n,n′ ∈ NV ,n � n

′} (1)

whereMA andNV are the sets of primitive and virtual network el-

ements, respectively, and I (Am ,Am′ ), I (Vn ,Vn′ ), I (Am ,Vn ) rep-

resent the inter-dependencies between primitive elements Am and

Am′ , between virtual elements Vn and Vn′ , between primitive

element Am and virtual elementVn , respectively.

In Definition 3.3, the inter-dependency I (·, ·) among different

network elements can be characterized as a directed multigraph

[17]. Each vertex of the graph represents a network element, and

the relationship between two coupled vertices are characterized

using one or multiple directed edges connecting the two vertices.

All directed edges together characterize the cross-dependency re-

lationship among the network elements. For example, primitive

element Link is the holder of another primitive element Capacity
(i.e., Link has attribute Capacity). Similarly, Link is an attribute

of primitive element Node and is a member of virtual element

1Here, Link Capacity and Session Rate refer to the network parameters rather
than any specific values of the parameters that can be time varying.

Links o f Session. The mutual relationship between primitive ele-

ment Node and virtual element Neiдhbors o f Node are character-
ized using two directed edges (hence a multigraph [17]): Node has
an attribute Neiдhbors o f Node , each member of which is a Node .

Network Control Interfaces. Based on the network element

representation, network control interfaces can then be designed.

Based on these, network designers are allowed to characterize net-

work behaviors. Four categories of operations have been defined:

(i) Read: Extract network information from a single or a group of

network elements, e.g., extract the set of links used by a session

from the attributes of Node; (ii) Set: Configure parameters for a

single or a group of network elements, e.g., set Maximum Power
(i.e., maxpwr), which is also an attribute of element Node ; (iii) Com-

pose: Construct a new expression by mathematically manipulating

network parameters obtained through Read operations. For exam-

ple, add together the power of all links originated from the same

node, i.e., sum Link Power (lnkpwr) over Links o f Node (lnknd);
and (iv) Compare: Define network constraints by comparing two

expressions obtained using Compose operations.

Centralized Network Control Problem. Finally, centralized

network control problems can be defined based on the network con-

trol interfaces (readers are referred to [18] for examples of network

control problem definition). A network control problem comprises

of the following four components:

• Network Setting can be configured by setting network param-

eters using Set operations and extracted from network elements

using Read operations. Configurable network parameters include

network architecture (single- or multi-hop, flat or clustered topol-

ogy), spectrum access preferences (scheduled or statistical access),

routing preferences (single- or multi-path routing), among others.

•Control Variables can be defined by setting (i.e., Set operation)

network parameters as optimization variables, including transmis-

sion power, frequency bandwidth, transmission time, source rate,

channel access probability, among others.

•Network Utility can be defined by binding (i.e., Compose oper-

ation) one or multiple expressions with mathematical operations

like +, −, ×, ÷ and mathematical functions like log,
√
(·) and their

combinations.

•Network Constraints can be defined by comparing two expres-

sions using Compare operations.

4 AUTOMATED PROBLEM DECOMPOSITION

So far, there is no existing unified decomposition theory that can

be used to decompose arbitrary network control problems. De-

pending on whether we need to decompose coupled network con-

straints, or coupled radio resource variables; and depending on

the decomposition order, a cross-layer network control problem

can be theoretically decomposed based on dual decomposition, pri-

mal decomposition, indirect decomposition and their combinations.

Please refer to [11, 12, 19] and references therein for a tutorial and

survey of existing decomposition theories and their applications.

In this paper, as one of our major contributions, we propose an

automated network control problem decomposition approach based

on decomposition of nonlinear optimization problems. Next, we

first provide a brief review of the decomposition theory based on

which our automated decomposition approach is designed.
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4.1 Decomposition Approaches

Cross-layer Decomposition. In this paper we consider duality

theory for cross-layer decomposition (while the automated decom-

position approach in Section 4.2 is not limited to any specific decom-

position theory). Consider a network control problem expressed as

maximize
x

∑
i∈I

fi (xi ),

subject to :
∑
i∈Ji

дi (xi ) ≤ c j , ∀j ∈ J
(2)

with x = (xi )i ∈I being the control vector. The dual function can

be constructed by incorporating the constraints into utility in (2)

by introducing Lagrangian variables λ = (λj )j ∈J ,

maximize L(x, λ) =
∑
i∈I

fi (xi ) −
∑
j∈J

λj

(
c j −

∑
i∈Ji

дi (xi )

)
(3)

where L(x , λ) is called the Lagrangian of problem (2) [20]. Then, the

original problem (2) can be solved in the dual domain byminimizing

(3), i.e., minimizing the maximum of the Lagrangian. This can be

accomplished by decomposing (3) into subproblems

fsub_1 = maximize
x

∑
i ∈I

fi (xi ) +
∑
j ∈J

λj

( ∑
i ∈Ji

дi (xi )

)
, (4)

fsub_2 = minimize
λ

fsub_1 −
∑
j ∈J

λjc j , (5)

and then iteratively maximizing fsub_1 over control variables x with

given λ and updating λ with the minimizer of fsub_2.
Distributed Decomposition. The outcome of cross-layer de-

composition is a set of network control subproblems each corre-

sponding to a single protocol layer, e.g., capacity maximization

at the physical layer, delay minimization through routing at the

network layer, among others. The objective of distributed decom-

position is to further decompose each of the resulting single-layer

subproblems into a set of local network control problems that can

be solved distributively at each single network entity based on local

network information.

In the existing literature, this goal has been accomplished by

designing distributed network control algorithms manually for

specific network scenarios and control objectives [7, 8, 21], which

however requires deep expertise in distributed optimization. Next,

we present a theoretical framework based on which distributed con-

trol programs can be designed for arbitrary user-defined network

control problems.

The core design principle is to decompose a coupled multi-agent

network control problem into a set of single-agent subproblems,

where each agent optimizes a penalized version of their own utility.

Consider a multi-agent network control problem with the objective

of maximizing U (x) �
∑
i ∈I

Ui (xi , x−i ), whereUi is the utility func-

tion of agent i ∈ I, x = (xi , x−i ) with xi and x−i representing the

strategy of agent i and the strategy all other agents in I/i . Then,
the key of distributed decomposition is to construct a penalized

individual utility Ũi (xi , x−i ) for each agent i ∈ I, expressed as

Ũi (xi , x−i ) = Θi (U (x)) + Γi (x), where Θi (U (x)) is the individual

item ofU (x) associated to agent i ∈ I, Γi (x) is the penalization item

for agent i . Below are three special cases of Ũi (xi , x−i ) while both
individual and penalization items can be customized by network

designers to achieve a trade-off between communication overhead

and social optimality of the resulting distributed control programs.

• Case 1: Θi (U (x)) = fi (xi , x−i ), Γi (xi , x−i ) = 0, i.e., best re-

sponse without penalization. In this case, the agents optimize

their own original utilityU (xi , x−i ) by computing the best

response to the strategies of all other competing agents (i.e.,

x−i ) with zero signaling exchanges.

• Case 2:Θi (U (x)) = ∇xiUi (x
0)(xi−x

0
i ), Γi (x) =

∑
j ∈I/i

∇xiUj (x
0)

(xi − x
0
i ), with x

0
i and x

0 being the current strategy of agent

i and of all agents. This will result in distributed gradient

algorithm, where partial cooperation is allowed among the

agents by exchanging appropriate signaling messages.

• Case 3:Θi (U (x)) = Ui (xi , x
0
−i ), Γi (xi , x−i ) =

∑
j ∈I/i

∇xi fj (x
0),

which leads to decomposition by partial linearization (DPL),

a newly established decomposition result [12].

4.2 Automated Decomposition

A key step in cross-layer decomposition, as discussed in Section 4.1,

is to form a dual function for the original user-defined network

control problem by absorbing constraints into the utility. Here, an

underlying assumption is that the original problem (2) must have

a determined set of constraints, i.e., sets I, J and Ji ,∀i ∈ I in

(2) must be known. This poses significant challenges to automated

network control problem decomposition at design phase, because

the sets associated to the network elements are not determined

other than at run time, i.e., they are virtual elements as defined in

Section 3.

Take virtual element nbrnd as an example, i.e., the set ofNeiдhbors
o f Node . The neighbors of a node may change from time to time

because of movement of nodes, joining of new nodes or leaving

of dead nodes. Similarly, the set of links along an end-to-end path,

the set of sessions sharing the same link and the set of all active

links in the network, among others, are also time varying with

no predetermined sets. That is to say, a network control problem

defined at a high and abstract level may result in many instances of

problems with different sets in the constraints and hence different

dual variables λj in the resulting dual function (3). Therefore, a cen-

tralized user-defined network control problem cannot be decomposed

by decomposing an arbitrary specific instance of the problem.

As a core contribution of this work, next we present a new

methodology to enable network control problem decomposition

in an automated fashion at design phase with no need to know

run time network information. At the core, we ask the following

question: For a user-defined centralized abstract network control

problem, are there any special set of instances of the problem such

that decomposing any problems in the special set decomposes all

possible instances? If yes, what is the right approach to obtain such

P(V): Network control 
problem to be instantiated

Virtual
Element

Instance of
Virtual Element

P(inst(V)): 
Instance of P(V) 

Psub(inst(Vsub)): Subproblem
obtained by decomposing

P(inst(V))

Apply decomposition results at
network run time

v1

v2

v3
Inst(v2)

Inst(v1)

Inst(v3)

Inst(v1)

Inst(v2)

Inst(v3)

Inst(v1)
Inst(v2)
Inst(v3)

v1

v2

v3

v1

v2

v3

Subproblem 1

Subproblem 2

Subproblem 3

Subproblem 4

Figure 2: Basic principle of network control problem decomposi-

tion based on disciplined instantiation (DI).
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problem instances? We answer these questions by proposing the

notion of disciplined instantiation (DI).

Disciplined Instantiation. In a nutshell, the DI technique gen-

erates at design time, following certain rules (as discussed below),

a specific instance of the user-defined abstract network control

problem, such that the abstract problem can be decomposed by

decomposing the specific instance and the obtained decomposition

results can be applied to those control problems at network run

time.

In Fig. 2 we illustrate the basic principle of the DI-based de-

composition approach by considering a network control problem

that involves three virtual elements v1, v2 and v3, which, e.g.,
can be Neiдhbors o f Node for nodes 1, 2 and 3, respectively.

Let inst(vi ) represent the instance of virtual element vi , denote
V = {v1,v2,v3} as the set of all the three virtual elements and

further denote the set of instances for all vi ∈ V as inst(V). Then,

the objective of DI is to create a unique instance for each virtual ele-

ment vi ∈ V such that there exists a one-to-one mapping between

V and inst(V).

Denote P(V) as the network control problem to be instantiated,

and let P(inst(V)) represent the specific instantiated problem ob-

tained by instantiating P(V). Then, P(inst(V)) can be decomposed

into a set of subproblems Psub(inst(Vsub)) each involving only a

subsetVsub of the virtual elements withVsub ⊂ V . For example, in

Fig. 2, P(inst(V)) has been decomposed into four subproblems, with

the first subproblem involving only virtual element v1, the second
involving only v2, the third involving only v3 while the fourth in-

volves all three virtual elements. Because of the one-to-onemapping

between each virtual network element vi and its instance inst(vi ),
the decomposition results obtained by decomposing P(inst(V)) are

also applicable to the original problem P(V) represented in virtual

elements and hence its various specific instances at network run

time.

In the above procedure, the key is to guarantee one-to-one map-

ping between each virtual elementvi and its instance inst(vi ). This
cannot be achieved by generating arbitrarily disjoint instances

for different virtual elements vi because active network elements

assumemultiple roles as described in Section 3. For example, a phys-

ical link needs to be involved in the instances of virtual element

“Links of Session" for all the sessions sharing the link. In the follow-

ing, we first describe the two rules following which instances are

generated in WNOS, i.e., equal cardinality and ordered uniqueness,

and then discuss why the two rules are needed for DI. Before this,

we first identify two categories of virtual elements, i.e., global and

local virtual elements. Please refer to Section 3 for the definition of

virtual element.

• A global virtual element is a virtual element whose set of phys-

ical network entities have the same entity type (e.g., node, or link)

and spans over the entire network, e.g., element netnd represents

Nodes in Network , the set of all users I in (2)-(4).

• Differently, a local virtual element comprises a subset of phys-

ical network entities of the network, and hence is a subset of the

corresponding global virtual element. For example, local virtual ele-

ment nbrnd (i.e., Neiдhbors o f Node) is a subset of global virtual
element Nodes in Network ; as another example, in (2)-(4), since

Ji is a subset of J , i.e., Ji ⊂ J , Ji is a local virtual element while

J is a global virtual element.

Rule 1: Equal Cardinality. This rule requires that all the in-

stances for the same type of local virtual elements, e.g.,Neiдhbors o f
Node , must have the same cardinality, i.e., the same number of

members. Instances that satisfy this requirement are called peer

instances.

In WNOS, this is achieved by peer random sampling, a technique

that can be used to generate peer instances. Specifically, given a

user-defined network control problem, the global virtual element

denoted as vglb is first instantiated using a set of pre-determined

number N glb of elements, i.e., |inst(vglb)| = N glb with inst(vglb)
being the instance of the global virtual elementvglb and |inst(vglb)|

being the cardinality of inst(vglb). The resulting instance inst(vglb)
will be used to serve as the mother set to generate instances for

those local virtual elements v lcl.
Then, each local virtual element v lcl can be instantiated by ran-

domly selecting a subset of members from the mother set inst(vglb),

i.e., the instance of the global virtual element vglb. Denote the re-

sulting subset instance as inst(v lcl), then we have |inst(v lcl)| = N lcl

and inst(v lcl) ⊂ inst(vglb), whereN lcl is the cardinality of instances

for local virutal elements.

Rule 2: Ordered Uniqueness. With this rule, a unique instance

will be generated for each local virtual element v lcl. This means

that no two subsets generated by peer random sampling will be

identical. In WNOS, this is accomplished by hash checking, as in (6):

inst(v lcl)
sor t (·)
−→ inst ′(v lcl)

h(·)
−→ hid lcl, (6)

where the members of inst(v lcl), i.e., the instance for local virtual
elementv lcl, are first sorted, and then a unique idhid lcl is calculated

for the sorted instance inst ′(v lcl) using a hash function h(·). A hash

function is a function that can be used to map an arbitrary-size data

(instances in our case) to a fixed-size id. In WNOS, hash function

is used to enable fast uniqueness checking by generating an id for

each of the generated instances.

Rationale for TheRules. The above two rules together guaran-

tee that there exist a one-to-one mapping between the local virtual

elements and their instances. As discussed above, this is the key to

guarantee that the decomposition results obtained based on DI are

also applicable at network run time. To show how the one-to-one

mapping can be achieved following the two rules, we take Fig. 3 as

an example where A, B, C and D represent four specific instances

of local virtual element v lcl, with each member in the set represent-

ing a primitive element (see Section 3 for the definition), e.g., an

individual node. Denote A′, B′, C′ and D′ as the sets resulting from

sorting the members of A, B, C and D, respectively.

It can be seen that set A is mapped to a three-digit id 100 while B

is mapped to 111. Instance C is also mapped to 100 since its sorted

instance C′ is identical to A′. Note that in Fig. 2, in each instantiated

sub-problem Psub(inst(Vsub)) the members of each instance may

be re-ordered by the mathematical manipulations decomposing the

instantiated network control problem P(inst(V)), e.g., forming and

A: {1, 3, 5, 7, 10}

C: {3, 1, 7, 5, 10}

D: {3, 1, 7, 5}

B: {2, 4, 8, 1, 3}

000

001

100

Instance hid

111

h(.)sort(.)
A’: {1, 3, 5, 7, 10}

C’: {1, 3, 5, 7, 10}

D’: {1, 3, 5, 7}

B’: {1, 2, 3, 4, 8}

Figure 3: Illustration of hash mapping.
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decomposing the dual function in (3), (4) and (5). In (6) function

sort(·) guarantees that the same instances are always mapped to the

same id regardless of the order of its members; otherwise, instance

C will be mapped to a different id 000 as the red dashed arrow

indicates in Fig. 3.

Moreover, in Fig. 3 instance D is mapped to an id different from

that of A and C. This implies that an instance A and its subset

instance D cannot be used at the same time for disciplined instan-

tiation (DI); otherwise, it will be hard to separate them if they

appear in the same instantiated network control sub-problems

Psub(inst(Vsub)). In DI, this is prevented by keeping all local in-

stances peer, i.e., it holds true for all local virtual elements that no

instance is a proper subset of any other instances. If hash checking

finds that a new instance for local virtual elementv lcl is identical to
any existing instances, i.e., they have the same id, another instance

will be created v lcl by peer random sampling.

Following the above two rules, a unique specific instance can

be obtained for each of the virtual local elements, while there ex-

ists a one-to-one mapping relationship between the local virtual

elements and their instances. Thus, decomposing the original net-

work control problem can be equivalently achieved by decomposing

the corresponding specific instantiated problem, which is machine

understandable and can be automatically conducted.

Decomposition. Finally, with instantiated network elements

in V , the dual function (3) of the network control problem P(V)

can be obtained and then decomposed as described in Section 4.1.

To enable automated decomposition, the resulting dual function is

represented using a tree. The whole dual function P is represented

using the root node, which can be represented as the sum of a leaf

node and an intermediate node, which can be further represented in

a similar way. In this way, the decomposition of a network control

problem (the dual function if dual decomposition is used) can be

conducted in an automated fashion by traveling through all leaf

nodes of the tree. The output of automated decomposition is a set of

distributed subproblems each involving a single protocol layer and

single network node. For each subproblem, a solution algorithmwill

be automatically generated and the resulting optimized network

protocol parameters will be used to control the programmable

protocol stack (PPS).

4.3 Toy Example of DI-based Decomposition

Consider the following cross-layer network control problem:
maximize

∑
s ∈S

Rs

subject to :
∑

s ∈Sl

Rs ≤ Cl (Π), ∀l ∈ L
(7)

where the objective is to maximize the sum of rate Rs of all flows
s ∈ S at the transport layer; subject to the constraints that, for

each link l ∈ L, the aggregate rate of all the flows in Sl , i.e., the

set of links sharing link l , cannot exceed the capacity of the link

Cl (Π) achievable with transmission strategies Π at the physical

layer; by jointly controlling Rs and Π. Next, we show how the

problem can be decomposed into two single-layer control problem

through DI-based decomposition, while more examples of the DI-

based decomposition that consider different network problems can

be found in [18].

Instantiation. As defined in Section 4.2, S (i.e., the set of all

flows) and L (i.e., the set of all links) are global virtual elements

while Sl ⊂ S is a local virtual element. In favor of easy illustration,

consider cardinality N glb = 3 for global virtual elements S and

L and N lcl = 2 for local virtual elements Sl , ∀l ∈ L. Then, the

global virtual elements S and L can be instantiated as S = {1, 2, 3}

(i.e., the network has in total three flows) and L = {1, 2, 3} (i.e.,

the network has in total three links). The instance of S will then

be used as the mother set for instantiating local virtual elements

Sl , ∀l ∈ L, as follows.

First, according to rule 1, i.e., equal cardinality, all Sl must have

the same number of members. According to rule 2, no two or more

Sl will be the same in the sense of ordered uniqueness. If local

virtual element Sl , i.e., the set of sessions sharing link l , is instanti-
ated to {1, 2} and {2, 1} for links l = 1 and l = 2, respectively, the

resulting two instances will have the same set of ordered members,

which violates rule 2 and hence are not allowed in DI. An example

instantiation that meets the two rules, which can be generated by

a combination of peer randomly sampling and hash checking as

discussed earlier in this section, is S1 = {1, 2}, S2 = {1, 3} and

S3 = {2, 3}. Let Ls represent the set of links used by flow s . Then,
according to the instances for Sl , the instances for Ls ⊂ L can

be given as L1 = {1, 2}, L2 = {1, 3} and L3 = {2, 3}. As a result,

problem (7) can be instantiated as
maximize R1 + R2 + R3
subject to : R1 + R2 ≤ C1(Π)

R1 + R3 ≤ C2(Π)

R2 + R3 ≤ C3(Π)

. (8)

Decomposition. Consider dual decomposition as discussed in

Section 4.1, then the dual function of (8) can be written as
maximize R1 + R2 + R3 + λ1[C1(Π) − R1 − R2]

+ λ2[C2(Π) − R1 − R3] + λ3[C3(Π) − R2 − R3], (9)

where λ1, λ2 and λ3 are dual coefficients. By decomposing (9), prob-

lem (8) can be decomposed into two single-layer problems:

Transport Layer :

⎧⎪⎪⎨⎪⎪⎩
maximize R1 − λ1R1 − λ2R1, for s = 1

maximize R2 − λ1R2 − λ3R2, for s = 2

maximize R3 − λ2R3 − λ3R3, for s = 3
(10)

Physical Layer : maximize λ1C1(Π) + λ2C2(Π) + λ3C3(Π), (11)

where, at the transport layer, each flow s ∈ {1, 2, 3} maximizes

its own utility by adjusting its transmission rate Rs with given

dual coefficients; while the physical-layer subproblem maximizes a

weighted-sum-capacity by adapting the transmission strategies Π.
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Figure 4: Prototyping diagram of WNOS.
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Application to Run-time. We show how the the decompo-

sition results can be applied at network run time by taking the

transport-layer subproblem for s = 1 as an example while the same

principles can also be applied to other subproblems. For s = 1,

the utility of the subproblem can be rewritten as R1 − (λ1 + λ2)R1.
Then, to determine the dual coefficients of R1 at run time, we only

need to identity the local virtual element corresponding to instance

{λ1, λ2}, which is virtual element L1 according to the instantiation

results of Ls . This means that, at run time, the dual coefficients for

flow s should be collected, e.g., at the source node of flow s , from
those links used by the flow.

5 EXPERIMENTAL EVALUATION

A proof of concept of WNOS has been deployed over a network

with 21 USRP software radios. The prototyping diagram is illus-

trated in Fig. 4, which follows a hierarchical architecture with three

tiers. At the top tier of the hierarchical architecture is the WNOS

control host, based on which one can specify the network control

objective using the provided network abstract framework WiNAR.

The output of this tier is a set of automatically generated distributed

solution algorithms, which will be sent to each of the SDR control

hosts. At the second tier, the programmable protocol stack (PPS) is

installed on each of the SDR control hosts. The distributed optimiza-

tion algorithms received from the WNOS control host are stored at

the decision plane of the PPS. At run time, the PPS will be compiled

to generate operational code to control the SDR front-ends of the

third tier. Finally, each of the SDR front-ends (i.e., USRP) receives

the baseband samples from its control host via Gigabit Ethernet

(GigE) interface and then sends them over the air with transmission

parameters dynamically specified in the control commands from

the SDR control hosts.

SDR Implementation. We test WNOS on the designed SDR

testbed in five different networking scenarios. As shown in Fig. 5,

Scenarios 1-3 deploy six nodes and two traffic sessions; while Sce-

nario 4 considers nine nodes and three traffic sessions, with each

session spanning over two hops. In Scenario 5, three sessions are

deployed over 21 nodes, with six hops for each session. Six spec-

trum bands in the ISM bands are shared by the 21 USRPs, with

bandwidth of 200 kHz for each spectrum band. At each USRP, the

data bits are first modulated using GMSK and then sampled at sam-

pling rate of 800 kHz. Reed-Solomon (RS) code is used for forward

error correction (FEC) with coding rate ranging from 0.1 to 0.4 at a

step of 0.1. The code to repeat experiments is available on website:

http://www.ece.neu.edu/wineslab/WNOS.php.

Through the experiments, we seek to demonstrate the following

properties: (i) Effectiveness: Through experiments in Scenarios

1-3, we show that WNOS-based network optimization outperforms

non-optimal or purely locally optimal (greedy) network control;

(ii) Flexibility: Through experiments in Scenarios 4 and 5, we

showcase the flexibility of WNOS in modifying the global network

behavior by changing control objectives and constraints; and (iii)

Scalability: In Scenario 5 we show the scalability of WNOS by

deploying code over a large-scale network.

Effectiveness. Five schemes have been tested: (i) WNOS-T-P:

transport and physical layers are jointly controlled by WNOS; (ii)

WNOS-T: only the transport layer rate is controlled by WNOS; (iii)

WNOS-P: only the physical layer power is controlled by WNOS;

(iv) neither transport or physical layer are controlled by WNOS;

and (v) Best Response: maximum rate and power are used at the

transport and physical layers, respectively.

The average performance of the five schemes is reported in

Figs. 6(a), (b) and (c) for network scenarios 1, 2 and 3, respectively.

As discussed above, the three network scenarios have been designed

to present different levels of interference between the two sessions.

The sum utility achievable by the best response scheme is a good
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Figure 8: Experimental instance for (a) & (b) power minimization and (c) & (d) sum-log-rate maximization.

indicator since with this scheme each node always transmits at the

maximum power, i.e., 30 dB transmit gain is used for USRP N210.

For example, with the least amount of interference in scenario 1,

best response achieves the highest sum utility of 1.44 compared to

0.89 in network scenario 3. From the three figures, it can be seen

that, compared with no control, considerable performance gain can

be achieved by the WNOS-T-P, i.e., with transport and physical

layers jointly controlled, and this gain increases as the interference

level increases. Once more, we would like to emphasize that this is

obtained by writing only a few lines of high level code on a centralized

abstraction; while the behavior is obtained through automatically

generated distributed control programs. Specifically, up to 80.4%

utility gain can be achieved in network scenario 3, which has the

highest interference. In the case of no cross-layer control, i.e., only

one protocol layer is optimized, WNOS still achieves significant

utility gain, which varies from 4.5% to 52.2% in the tested instances.

Modifying Network Behavior. In the following experiments,

we showcase WNOS’s capability of modifying the global network

behavior by changing a few lines of code. To achieve different

desired network behaviors, one only needs to change the central-

ized and abstract control objective or modify the constraints while

WNOS generates the corresponding distributed control programs

automatically. For example, if the control objective is to maximize

the sum throughput (i.e., maximize
∑
x) of all sessions instead of

sum log throughput (i.e., maximize
∑
log(x)) as in Control Problem

1 (Control Program 2), this can be accomplished by rewriting one

line of code only: expr = mkexpr(’sum(wos_x)’, ’wos_x’). As shown

in Fig. 6 (d, top), compared with Control Program 1 (i.e., maximiz-

ing sum-log-throughput), Control Program 2 obtains higher sum

throughput (4.92 vs 4.66 in packets/s) by increasing the throughput

of session 1 while decreasing the throughput of session 2, in this

way, as expected, trading throughput for fairness. This is because

it is easier for session 1 (see scenario 1 in Fig. 5) to achieve higher

throughput than session 2 since session 1 has shorter links.

Furthermore, if the network user needs to limit the maximum

transmit power of the first session (Control Program 3), this can

be accomplished simply by defining a new constraint using the

following two lines of code:

nt.make_var(’wos_z’, [ntses, seslnk, lkpwr], [1, all, None])

nt.add_cstr(’wos_z < 5’, ’wos_z’)

where the first line of code defines link power as a variable while

the second line specifies the upper bound constraint. The resulting

session behaviors are shown in Fig. 6 (d, top), where the throughput

of session 1 has been effectively bounded. In another example, three

sessions are deployed as in scenario 4 in Fig. 5. The normalized
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Figure 7: (a) Transmission power and (b) throughput resulting

from sum-log-rate maximization and power minimization.

transmission power of sessions 2 and 3 are programmed to be

smaller than 6 and greater than 20, respectively (Control Program

4). It can be seen in Fig. 6 (d, bottom) that, compared with Control

Program 2, the throughput of sessions 2 and 3 can be successfully

changed with the new control program. As shown above, all this

needs only two new lines of code to characterize the behavior of

session 3.

Flexibility and Scalability. We further test the flexibility and

sacalbility of WNOS in changing control programs on a large-scale

SDR testbed of 21 USRPs (i.e., Scenario 5) and by considering two

sharply different network control objectives: sum-log-rate maxi-

mization and power minimization. Again, changing the network

control behaviors based on WNOS requires modifying a couple

of lines of code only. The WiNAR code for defining the power

minimization control objective is as follows:

nt.make_var(‘wos_x’, [ntlk, lkpwr], [all, None]);

expr = mkexpr(‘sum(wos_x)’, ‘wos_x’),

where the first line states the transmission power of all the active

links in the network as control variables, while the second line

defines the sum of the transmission power as the utility function to

be minimized.

The measured average transmission power of the source and

intermediate nodes are plotted in Fig. 7(a), while the achievable

throughput is reported in Fig. 7(b). Unsurprisingly, the two con-

trol objectives result in different network behaviors. With power

minimization, the three sessions achieved approximately the target

throughput ( packets/s) with much lower average power than sum-

log-rate maximization; while the latter achieves higher throughput

at the cost of higher power consumption.

Figure 8 provides a closer look at the contrasting network be-

haviors resulting from the two control objectives, respectively, by

plotting the interactions between sessions 1 and 2 in terms of trans-

mission power and the corresponding instantaneous throughputs. It
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can be seen from Fig. 8(b) that session 2’s running average through-

put decreases to zero during 20 − 200s because of low SINR. In

response, session 2 increases its transmission power while session

1 decreases until session 2 recovers at around 200s. After session 2

is finished, session 1 keeps its current transmission power, which is

sufficient to achieve the target throughput. Very differently, in the

case of sum-log-rate maximization, after session 2 is done, session

1 increases its transmission power to maximize the throughput, as

shown in Fig. 8(d).

6 LIMITATIONS AND FUTUREWORK

We believe that our work on WNOS provides the first proof of con-

cept of the ability to create a principled optimization-based wireless

network operating system, where the desired global network behav-

ior is defined on a centralized high-level abstraction of the network

and obtained through automatically generated distributed cross-

layer control programs. We acknowledge several limitations, which

will be addressed in future work.

Learning-based Automated Modeling. Currently the decom-

position requires the WNOS to specify mathematical models for

network protocols at all layers. We are working to standardize the

interface of WNOS and plan to make the source code of WNOS

available so that new protocols and mathematical models can be

easily incorporated into the existing programmable protocol stack

(PPS). While the current version of the PPS is designed for soft-

ware defined radios, we also plan to develop versions of the PPS

designed to operate on legacy wireless interface cards (e.g., WiFi).

Last, we also plan to extend WNOS to build mathematical models

for user-defined network control problems by online learning and

automated modeling [22].

Multi-timescale Control. Network protocols at different lay-

ers operate at different time scales, which can be up to orders-of-

magnitude different. In the current WNOS implementation, static

time scales have been considered, e.g., 30 times larger for transport-

layer rate adaptation than physical-layer power control in the

testbed evaluation in Section 5. In the future, we will work to let

WNOS determine time scales automatically for different protocols

based on the user-defined high-level network control objective,

including convergence and delay requirements, network size, as

well as the underlying transmission medium.

Decomposition Approaches. Given user-defined high-level

network control problems, mathematical optimization problems are

constructed and then decomposed by WNOS. Currently only dual

decomposition and decomposition by partial linearization (DPL)

have been considered for cross-layer and distributed decomposi-

tions, respectively. We plan to incorporate other decomposition

approaches, such as primal decomposition, hybrid dual and primal

decompositions [19].

7 CONCLUSIONS

We discussed the basic building principles of the Wireless Network

Operating System (WNOS). WNOS provides network designers with

an abstraction hiding the lower-level details of the network opera-

tions. Based on this abstract representation, WNOS takes central-

ized network control programs written on a centralized, high-level

view of the network and automatically generates distributed cross-

layer control programs based on distributed optimization theory

that are executed by each individual node on an abstract represen-

tation of the radio hardware. We presented the design architecture

of WNOS, discussed the technologies to enable automated decom-

position of user-defined centralized network control problems. We

have also prototyped WNOS and evaluated its effectiveness using

testbed results. Future research directions will include automated

modeling, multi-timescale control and incorporating heterogeneous

decomposition approaches.
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