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Abstract—We study distributed queueing games in
interference-limited ad-hoc wireless networks. We formulate
system design as a Nash Equilibrium (NE) problem, where the
users aim at maximizing their own throughput by choosing the
optimal transmission threshold. We first derive conditions for
the existence and uniqueness of the NE; then we propose a
distributed best-response algorithm solving the game along with
its convergence properties.

A second contribution of the paper is to develop a Branch
and Bound-based (centralized) algorithm solving the associated
(nonconvex) social problem, which one can use as benchmark
to evaluate the performance of the proposed game theoretical
formulation. Interestingly, our numerical results show that the
sum-throughput achievable at the NE of the proposed game are
very close to that of the social problem, which validates our game
theoretical formulation. The performance loss is not negligible
only in high interference scenarios. For such cases, we proposed a
pricing-based algorithm yielding sum-throughput solutions very
close to the globally optimal ones, at the cost of very limited
signaling among the users.

I. INTRODUCTION

Two important aspects of the wireless system design is the

allocation of the Physical resources and the optimization of the

scheduling, based on the queues. Moreover, in infrastructure-

less wireless networks where there is no centralized control

(e.g., mobile ad hoc, vehicular, sensor networks), the above

optimization must be performed in a distributed way. When

no multiple access scheme is imposed a priori, the users may

interfere to each other; which introduces a coupling among

the users’ transmission strategies. This makes the distributed

optimization of the Physical resources and scheduling a chal-

lenging problem.

Several game theoretical formulations have been proposed

in the literature to deal with the above issue [1]–[8]. For

example, in [1], Huang et al. formulated the power control

problem in ad hoc networks as a fictitious game; in [2],

Park et al. formulated the problem of single-channel carrier

sensing as a non-cooperative game; and in [3] SariKaya et

al. investigated the problem of uplink wireless random access
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and formulated it as a dynamic pricing game. However, all

these works focus only on the optimization of the physical

layer; queuing dynamics have not been incorporated into the

analysis. In [4], Le et al. investigated the performance of

longest-queue-first (LQF) scheduling for wireless networks

under the deterministic SINR interference model; in [5], the

authors proposed to maximize the stable throughput of multi-

hop wireless networks with random traffic arrivals based on the

back-pressure control policy. However, the SINR interference

model in these works primarily captures only the large-

scale fading characteristics of the signal propagation. In [8],

Hanawal et al. formulated stochastic-geometry based medium

access games for ad hoc networks as a Nash Equilibrium (NE)

problem. The analysis presented in [8] is however restricted

to a symmetric game, meaning that all users rely on the same

transmission strategy. To the best of our knowledge, the joint

and distributed optimization of Physical Layer resources and

scheduling based on the queue status is still an open problem

(at least under realistic interference model).

This paper is the first attempt toward this direction. We

consider a wireless ad-hoc network composed of multiple

users sharing the same spectrum. When a new packet arrives,

each user decides whether to enqueue the packet, or to transmit

it, based on the statistical behavior of the observed interference

on each channel. Clearly, the decision of each user will affect

also the others. If a node decides to transmit, it generates

interference against the other users, thus potentially reducing

their packet transmission success rate. On the other hand, if

the user enqueues the packet, it increases its queuing delay

and therefore the probability of dropping packets (because it

violating the maximum delay deadline). A natural question is

then how to design distributed algorithms to decide whether
to enqueue or transmit that achieve high levels of network
throughput?

In this paper we address the above question by focusing

on threshold-based policies, where each user selects its “best”

instantaneous frequency channel, and then decides to transmit

or enqueue by comparing the channel quality with an adaptive

threshold; the node transmits if the channel quality is above the

threshold, and enqueues otherwise. The reason of using such

a transmission strategy is that we are interested in distributed

low-complex solution algorithms. The main contributions of
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the paper are the following.

We first formulate the problem of distributed selection of

users’ transmission thresholds as a non-cooperative game: we

model the users as selfish players that compete each other by

choosing the optimal transmission threshold maximizing their

throughput. We derive sufficient conditions for the existence

and uniqueness of a NE, and propose asynchronous best-

response algorithms converging to the NE.

We then consider a cooperative scenario, in which the users

are willing to exchange limited and local signaling information

in favor of better performance. In this setting, we formulate

the system design as a “social” problem, where the users

aim at maximizing the sum-throughput with respect to their

transmission thresholds. Since such a formulation is NP hard,

we focus on locally optimal solutions, and building on recent

results in [9], [10], we propose a novel pricing-based algorithm

that converges to a stationary solution of the nonconvex sum-

throughput maximization.

Finally we evaluate the performance of the proposed non-

cooperative and cooperative formulations, using as benchmark

the globally optimal solutions achievable by a Branch and

Bound-based (centralized) algorithm solving the social prob-

lem. The rest of the paper is organized as follows. Section

II introduces the system model and problem formulation. In

Section III, we present and analyze the proposed best-response

distributed algorithm and the pricing-based distributed algo-

rithm. Simulation results are presented in Section IV. Finally,

Section V draws some conclusions.

II. SYSTEM MODEL

We consider a set N of traffic sessions sharing the same

spectrum. For each session, say n ∈ N , a source-destination

pair is identified. Each destination is assumed to be reachable

via one-hop by its source node. The spectrum available for

communication is divided into a set of F frequency channels,

and the transmission time is divided into consecutive time

slots. In each time slot, each backlogged source node can either

transmit to its destination by selecting a frequency within F
or be silent and enqueue any new packets in its buffer.

We consider a threshold-based transmission policy, accord-

ing to which each user (i) selects the frequency channel with

the best channel gain, say f∗, and (ii) transmits a packet to its

destination over f∗ if the corresponding channel gain is higher

than a threshold β, and does not transmit otherwise. Note that

each channel is potentially shared by different sessions (thus

interfering to each other). A higher threshold β implies higher

probability of good channel quality and hence lower rate of

transmission error. However, a higher threshold also reduces

opportunities for a node to transmit. This may result in a larger

queueing delay, and consequently in a higher probability that

a packet exceed the maximum queueing delay and then be

dropped at the receiver side. Conversely, a lower threshold

β implies higher transmission error rate, but lower packet

dropping rate. Therefore, each user needs to dynamically

adjust its channel gain threshold β to explore the optimal

tradeoff between transmission and queueing.

Channel model. Denoting by hf
n the channel gain on fre-

quency f ∈ F of user n ∈ N between its source and

destination nodes, hf
n can be written as hf

n = ĥnh̃
f
n, where

ĥn represents the square root of path loss and h̃f
n is the

channel fading coefficient. Considering a non-singular path

loss model1, then ĥn =
√
(1 + lαn)

−1, where ln is the

communication distance [m] between the transmitter and the

receiver of user n, and α represents the path loss factor.

We assume a block fading channel, i.e., the channel fading

coefficients h̃f
nm change at the beginning of each time slot

and remain constant for the entire duration of a time slot. In

each time slot, each h̃f
nm is assumed to be Rayleigh distributed

with parameter Ω, i.e.,

Pb(h̃f
nm = x) =

2x

Ω
e−

x2

Ω , f ∈ F , ∀n,m ∈ N . (1)

Threshold policy. Let βn > 0 be the channel fading threshold

for user n ∈ N and let f∗ be the best frequency channel,

i.e., f∗ = argmax
f∈F

ĥnh̃
f
n. Then, according to the threshold

policy, user n chooses to transmit a packet over channel f∗

if h̃f∗
n ≥ βn and to queue otherwise. Then, according to (1),

the probability that h̃f
n is lower than the threshold βn can be

expressed as

Pb(h̃f
n < βn) =

∫ βn

0

2x

Ω
e−

x2

Ω dx = 1− e−
β2
n
Ω . (2)

The probability that user n ∈ N transmits a packet during a

time slot, denoted as φ(βn) = 1− Pb(h̃f∗
n < βn), is then

φ(βn) = 1− (
1− e−

β2
n
Ω

)|F|
, (3)

where |F| represents the cardinality of the set F .

Queuing model. Let νn denote the number of time slots that

it takes for node n ∈ N to transmit a packet. The probability

density function (PDF) of νn is

Pb(νn = k) = (1− φ(βn))
k−1φ(βn). (4)

The expected value of νn, denoted by E[νn], is E[νn] =
1

φ(βn)
.

To keep our analysis tractable, we approximate the pdf in

(4) using an exponential distribution having the same first-

order moment of the original pdf. Denoting by μn(βn) the

parameter of the exponential distribution function associated

with user n ∈ N , the pdf approximating (4) is

Pb(νn = k) ≈ μn(βn)e
−μn(βn)k, (5)

where μn(βn) = φ(βn) with φ(βn) defined in (3). Numerical

results show that (5) fits very well the original pdf in (4) [12].

Assuming that the packet arrival rate at each node n ∈ N
follows a Poisson distribution with average rate λn, the queue

at node n ∈ N can be modeled as an M/M/1 queue, based

on the approximation in (5). Denoting by T th
n the maximum

queuing delay for user n ∈ N , the packet loss probability

1In the non-singular path loss model, the path loss tends to one as
propagation distance tends to zero, whereas in singular path model, the path
loss tends to infinity. Readers are referred to [11] for details.
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of user n caused by exceeding the maximum queueing delay

T th
n , denoted by Pn

dly(βn), is

Pn
dly(βn) � Pb(Tn > T th

n ) = e
−(

μn(βn)
Tslt

−λn)T
th
n , (6)

where Tslt is the time duration of a time slot. Since Pn
dly(βn)

in (6) can not be greater than 1, it must be

μn(βn)

Tslt
− λn ≥ 0, (7)

with μn(βn) = φ(βn) defined in (3). This leads to the

following upper bound on βn

βn ≤ βU
n , ∀n ∈ N , (8)

with

βU
n =

√
− ln

[
1− (1− Tsltλn)

1
|F|

]
Ω. (9)

Interference model. If multiple users select the same fre-

quency channel, they will interfer to each other. Let γth
be the threshold on the signal-to-noise-plus-interference ratio

(SINR) γn above which a packet can be correctly decoded at a

receiver, Then, the probability that a transmission error occurs

for user n ∈ N is

Pb(γn < γth
)
= Pb

(
Pnĥ

2
n(h̃

f
n)

2

σ2
n,f + Ifn(β−n)

< γth

)
, (10)

where Pn is the transmission power of user n ∈ N , σ2
n,f

is the power of Gaussian noise, and Ifn(β−n) represents the

interference at the destination node of user n on the carrier

f ∈ F , which depends on the transmission thresholds β−n �
(βm)m∈N/n. In (10), the channel fading h̃f

n follows a Rayleigh

distribution as in (1) and takes values in [βn +∞), where βn

is the transmission threshold of user n.
The interference Ifn(β−n) in (10) can be expressed as

Ifn(β−n) =
∑

m∈N/n

Pmĥ2
mn(h̃

f
mn)

2αf
m(βm), (11)

where ĥ2
mn and (h̃f

mn)
2 represent the path loss and the square

of channel fading between the source node m ∈ N and the

destination node n ∈ N ; the value of αf
m(βm) is equal to

one if user m transmits, and zero otherwise. Therefore, the

aggregate interference measured at the receiver node of user

n depends on (i) the locations of the source nodes of all other

sessions, (ii) whether each source transmits or not (iii) which
channel each source uses for transmission.

We model the distribution of Ifn(β−n) in (11) following

a classical stochastic geometry theory approach [13]. More

specifically, the node distribution in the network are assumed

to follow a bi-dimensional Poisson Point Process (PPP). This is

a well-accepted model of static ad-hoc networks with random

deployment as well as networks with moving users. In this

setting, the pdf of Ifn(β−n) is the Gamma distribution function

ζn(x), i.e.,

ζn(x) � Pb
(
Ifn(β−n) = x

)

= xkn(β−n)−1 e−x/θn(β−n)

Γ(kn(β−n))θ
kn(β−n)
n (β−n)

, (12)

where kn(β−n) and θn(β−n) are β−n-dependent shaping

parameters of the Gamma function, and both can be estimated

online; and Γ(kn) in (12) is given by

Γ(kn(β−n)) =

∫ ∞

0

xkn(β−n)−1e−xdx. (13)

Let ϑn(x,β−n) be the complementary cumulative distribu-

tion function of Ifn(β−n). Then, according to (12), ϑn(x,β−n)
can be written as

ϑn(x,β−n) � Pb(Ifn(β−n) > x)

= 1−
ϕ(kn(β−n),

x
θn(β−n)

)

Γ(kn(β−n))
, (14)

where Γ(kn(β−n)) is defined in (13), and

ϕ(kn(β−n),
x

θn(β−n)
) is the incomplete gamma function

given by

ϕ(kn(β−n),
x

θn(β−n)
) =

∫ x
θn(β−n)

0

skn(β−n)−1e−sds. (15)

Under the above assumptions, the packet loss probability in

(10) is given by

Pn
err(β) � Pb(γn < γth

)

=

∫ ∞

βn

2x

Ω
e−

x2

Ω ϑn

(
Pnĥ

2
n

γth
x2 − σ2

n,f , β−n

)
dx (16)

with ϑn(·, ·) defined in (14) and β � (βn)n∈N .

Expected throughput. Using the expressions of the packet

loss probability Pn
dly(βn) and the transmission error rate

Pn
err(β) of user n as given in (6) and (16), respectively, we can

now introduce the overall loss rate Pn
los(β) and the expected

throughput Rn(β) of each user n, given by

Pn
los(β) = Pn

dly(βn) + [1− Pn
dly(βn)]P

n
err(β) (17)

Rn(β) = λn

(
1− Pn

dly(βn)− [1− Pn
dly(βn)]P

n
err(β)

)
, (18)

where λn is the average incoming packet rate of user n. Note

that Rn(β) is a function of β through Pn
dly(βn) and Pn

err(β).
We now approximate the throughput Rn(β) in (18) by

neglecting the second-order term Pn
dly(βn)P

n
err(β), which

is acceptable when the overall packet loss rate is low or

moderate. For example, if Pn
dly(βn) = 0.1 and Pn

err(β) = 0.1
(which are already very high values), the overall packet loss

rate is 0.19 and the approximation is 0.20. The resulting

approximation error is only 0.01. The approximation error is

0.1 when Pn
dly(βn) and Pn

err(β) take a value of 0.2. Based

on the approximation, the throughput of user n ∈ N can be

simplified as

Rn(β) = λn

(
1− Pn

dly(βn)− Pn
err(β)

)
. (19)

System design. The system design would be to maximize the

sum throughput of all users in N , i.e.,

max
β=(βn)n∈N

∑
n∈N

Rn(β)

s. t. βn ≥ 0, ∀n ∈ N (20)

βn ≤ βU
n , ∀n ∈ N
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However, the above optimization problem is highly nonconvex,

implying that only suboptimal solutions can be efficiently

computed even with centralized algorithms. Since we would

like to design distributed solutions with low complexity, we

follow here a different approach and we concentrate on

decentralized strategies where the users are able to self-

enforce the negotiated agreements on the use of the available

spectrum without the intervention of a centralized authority.

This motivates and makes natural a game-theoretic approach

to this multi-agent decision making problem.

III. DISTRIBUTED SYSTEM DESIGN

In this section, we first formulate the system design as a

Nash equilibrium problem and propose a distributed algorithm

to compute the NE of the game. Then we focus on a co-

operative scenario where the users are willing to exchange

some informations in favor of better performance, and design

a pricing-based algorithm converging to a stationary solution

of (20).

A. Game Theoretical Formulation
We formulate the optimization of the channel thresholds as

a NE Problem, where the users represent the players of the

game and the payoff function of each user is the achievable

throughput Rn(β); each player n ∈ N competes against the

others by choosing the channel threshold βn that maximizes

its own throughput Rn(β), i.e.,

max
βn∈Φn

Rn(βn,β−n)

s.t. βn ≥ βL
n (21)

βn ≤ βU
n

where βU
n is the upper bound of βn as given in (9), βL

n is

a given lower bound (we discuss shortly how to choose this

lower bound), and Φ =
∏

n∈N
Φn with Φn = [βL

n βU
n ] denotes

the joint strategy set of the game.
Definition 1 (Nash Equilibrium): A channel fading thresh-

old vector β∗ = (β∗
n)n∈N is a NE of the game (21) if the

following condition holds for all the users n ∈ N :

Rn(β
�
n,β

�
−n) ≥ Rn(βn,β

�
−n), ∀βn ∈ Φn. (22)

Theorem 1 (Existence of NE): Given the NE Problem (21),

suppose that βL
n ≥

√
2
2 Ω for all n ∈ N , where Ω is the

Rayleigh fading factor. Then, the NE Problem has a NE.
Proof: The existence of a NE is guaranteed if i) the

strategy set of each player is convex and compact; and ii)

the payoff function of each player is a continuous function

of β and concave in βn, for any given feasible β−n [14].

We only need to show that each function R(βn,β−n) is a

concave function of [βL
n , β

U
n ], when βU

n ≥
√
2
2 Ω. This can be

easily checked computing the first and second derivatives of

Pn
los(β) with respect to βn which is omitted because of the

space limitation.

Distributed best-response algorithms. To compute a NE we

focus on Jacobi best-response algorithms: all the users simul-

taneously update their strategies solving in parallel their own

(convex) optimization problems (21). The formal description

of the algorithm is given in Algorithm 1.

Algorithm 1: Jacobi Best-response Algorithm

Data : β0 ∈ Φ. Set κ = 0.
(S.1) : If βκ satisfies a suitable termination criterion: STOP;
(S.2) : For all n ∈ N , compute the best-response:

βκ+1
n ∈ argmax

βn∈Φn

Rn(βn,β
κ
−n) (23)

(S.3) : κ ← κ+ 1 and go to (S.1).

Convergence conditions of Algorithm 1 are given in Theo-

rem 2 below, whose proof is based on recent results in [15]

(see also [16] for more details) and is omitted because of the

space limitation.

Theorem 2 (Convergence Condition): Given the game in

(21) in the setting of Theorem 1, suppose that the following

conditions are satisfied:

min
β∈Φ

∂2Pn
los(β)

∂β2
n

>
∑

m∈N/n

max
β∈Φ

∂2Pm
los(β)

∂βm∂βn
, ∀n ∈ N . (24)

Then, the sequence generated by Algorithm 1 converges to the

unique NE of the game.

Note that the convergence conditions in Theorem 2 do

not depend on the specific updating order performed by the

users. In fact, we can prove that these conditions guarantee

also convergence of best-response algorithms based on a

totally asynchronous update of the player strategies (in the

sense of [16]). In such asynchronous schemes, some players

may change their strategies more frequently than the others

(e.g., at random times) and they may even use an outdated

information of the other players strategies, without affecting

the convergence of the algorithm. It turns out that instances

of the aforementioned asynchronous framework are robust

against missing or outdated updates of the players. This

feature strongly relaxes the constraints on the network syn-

chronization; which makes the proposed class of algorithms

truly appealing in many practical scenarios. Interestingly the

convergence conditions in (24) have an intuitive interpretation;

they define different network scenarios wherein the algorithm

is guaranteed to converge, as detailed next.

Congestion-dominated wireless network. This scenario cor-

responds to large incoming average packet rates λn. Indeed,

the analysis of (24) shows that the left-hand side of the

inequality monotonically increases with λn, implying that

condition (24) tends to be satisfied in networks with large λn,

where the users tend to choose low transmission thresholds βn

(they transmit more often to avoid high packet loss rate due

to exceeding the the maximum queueing delay T th
n ).

Loosely coupled interference. This corresponds to sparse

wireless networks (e.g., due to low density of nodes or large

number of available channels). When this happens, the right-

hand side of (24) tends to be “very small”, making the

convergence condition more likely to be satisfied.

Delay-insensitive wireless networks. In this setting, we

have large maximum tolerable queueing delays T th
n . Indeed,
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Fig. 1: (a): Convergence of the best-response based distributed algorithm (top) and average rayleigh fading threshold (bottom); (b)
Performance of the three algorithms in the case of low traffic load and ten frequencies. (c) Performance comparison in the case of moderate
load and two frequencies.

when T th
n s are “large”, the left-hand side of (24) tends to be

“large” too, making the convergence condition to be satisfied.

In this scenario, each user will choose to enqueue its data more

often and transmit only when its channel quality is very good,

resulting in low generated interference.

B. Pricing-based Algorithms

We assume now that the users are willing to exchange some

limited signaling in favor of better performance. Building

on recent results in [9], [10], we proposed next a best-

response Jacobi algorithm based on pricing that converges to

a stationary solution of the social problem (20). The main

idea of the algorithm is to implement in a distributed way a

pricing mechanism; each user n maximizes his own rate minus

a pricing term that measures somehow the marginal increase

of the sum-utility of the other users due to a variation of the

strategy of user n. Roughly speaking, the pricing works like a

punishment imposed to each user for being too aggressive in

choosing his own strategy and thus “hurting” the other users.

The formal description of the algorithm is given in Algorithm

2, where the pricing term πn(β
ν) in (26) is defined as

πn(β
κ) =

∑
m∈N/n

ωm∇βnRm(βκ), (25)

and τn
2 (βn − βκ

n)
2, with τ > 0, is a proximal regularization

term, whose numerical benefits are well-known [17].

The convergence properties of Algorithm 2 are given in

Theorem 3 below. The proof of the theorem is based on [9],

[10] and is omitted because of space limitation.

Algorithm 2: Pricing Jacobi Algorithm

Data : τ � (τn)n∈N > 0, {ηκ} > 0. Set κ = 0.
(S.1) : If βκ satisfies a suitable termination criterion: STOP;
(S.2) : For all n ∈ N , compute

̂βn(β
κ) � argmax

βn∈Φn

Rn(βn,β
κ
−n)− πn(β

κ)βn − τn
2
(βn − βκ

n)
2

(26)

(S.3) : Set βκ+1 = βκ + ηκ(̂βn(β
κ)− βκ

n).
(S.4) : κ ← κ+ 1 and go to (S.1).

Theorem 3 (Convergence Condition): Given the social

problem (20), suppose that {ηκ} is choose so that

ηκ ∈ (0, 1], ηκ → 0, and
∑
κ

ηκ = +∞. (27)

Then, either Algorithm 2 converges in a finite number of

iterations to a stationary solution of (20), or every limit point

of the sequence {βκ} (at least one of such points exists) is a

stationary solution of (20). Moreover, none of such points is

a local minimum of the social function.

An example of sequence ηκ satisfying conditions (27) in

Theorem 3 is [9]:

ηκ = ηκ−1(1− εηκ−1), κ = 1, . . . , (28)

where ε ∈ (0, 1) is a given constant.

IV. PERFORMANCE EVALUATION

System setup. We consider a communication area with size of

200×200 m2. The area is divided into 100 blocks, each having

a size of 20× 20 m2. Then, we generate a random number of

users in each block according to a Poisson distribution with

different values of the density parameter μ. For example, if

μ = 1, the average number of transmitters is 0.1 in each block

and is 10 in the whole communication area. Each transmitter

communicates with its intended receiver that is located in an

arbitrary direction with a random distance between 50 and 100

meters. The path loss factor between any two nodes is set to

α = 3, and the Rayleigh fading factor is set to Ω = 0.5. The

SINR threshold γth to successfully decode a packet is set to

a typical value of 10.

To benchmark our algorithms, we developed a centralized

solution algorithm based on the branch and bound framework

to obtain the global optimum of the social problem (20).

A simple “aggressive policy” is also tested to provide a

performance benchmark. Based on the policy, each user uses

the lowest channel fading threshold of βn = βL
n (which is set

to
√
2
2 Ω as discussed in Section III) and hence aggressively

chooses to transmit with high probability. All results are

averaged over 20 independent simulations.

Convergence performance. Convergence of Algorithm 1 is

shown in Fig. 1 (a: top) for a network with average number

of users set to 20. In the figure, we plot the throughput of five

randomly selected users and the average fading threshold of

all users against the iteration number. The average incoming

packet rates λ are randomly selected from domain of [20 60].

We observed that the distributed algorithm converges very

quickly, which is usually within four-five iterations in all tests.

This verifies our analysis about the convergence condition in
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Fig. 2: Comparison of the four algorithms in high interference
network with different traffic loads, (a): 15 users and (b): 50 users,
two frequencies.

Section III, that is, the distributed best-response algorithm

converges in networks with loosely coupled interference.

The average Rayleigh fading thresholds corresponding to

the above three cases are given in Fig. (1) (a: bottom) in

cases of low (λ ∈ [20 60]), moderate (λ ∈ [20 180]) and

high (λ ∈ [140 180]) load traffics. The proposed distributed

solution algorithms also converges very fast in all cases.

Throughput comparison. Throughput performance of the

proposed distributed solution algorithm is presented in

Fig. 1 (b) and Fig. 1 (c), where the average packet rate of each

user is selected from [20 60] and [20 180], and the number of

frequencies is set to 10 and 2, respectively. The proposed best-

response distributed algorithm achieves good sum throughput

performance. For example, Fig. 1 (b) shows that an 98.3% of

the global optimum can be achieved in the case of five users

and ten frequencies. It can also be seen that the aggressive

policy achieves comparable (but lower) throughput only in the

case of five users with ten frequencies, while it achieves a

sum throughput much lower than the global optimum and the

proposed best-response algorithm in all the other cases.

Finally, Fig. 1 (c) with Fig. 1 (b) show that Algorithm

1 suffers from higher price of anarchy when there is high

interference among users, e.g., due to large number of users,

less available frequencies or high load traffic. This perfor-

mance gap can be partially filled by allowing certain degree of

cooperation among users as shown in Fig. 2, where we report

the performance achievable by Algorithm 2, for different

traffic loads.

We can see that in case of high load traffic, Algorithm 2

achieves more than 7% of improvement in throughput with

respect to Algorithm 1, whereas the gain reduces to 3.5% in

case of moderate load, and it is negligible when the traffic load

is low. From these results, we conclude that local cooperation

(through pricing) is desirable in high interference networks

(Fig. 2 (a)), whereas similar conclusion can be drawn from

Fig. 2 (b), which illustrates the performance with 50 users.

V. CONCLUSIONS

We studied distributed queueing games in interference-

limited wireless networks. The problem of throughput maxi-

mization through distributed selection of a transmission thresh-

old was formulated as a NE problem. We proposed a best-

response based algorithm for the noncooperative case and a

pricing-based algorithm for the cooperative scenario. Through

comparisons to the global optimum, we showed that non-

cooperative best response strategies work well in general, and

achieve a significant portion of (often very close to) the global

optimum. In case of high interference coupling among users,

the optimality gap increases, and can be partially filled by

relying on cooperative strategies.
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[2] K.-J. Park, C. Hou, T. Başar, and H. Kim, “Noncooperative Carrier Sense
Game in Wireless Networks,” IEEE Trans. on Wireless Communications,
vol. 8, no. 10, pp. 5280–5289, Oct. 2009.

[3] Y. Sarikaya, T. Alpcan, and O. Ercetin, “Dynamic Pricing and Queue
Stability in Wireless Random Access Games,” accepted by IEEE Journal
of Selected Topics in Signal Processing.

[4] L. Le, E. Modiano, and N. B. Shroff, “Longest-Queue-First Scheduling
Under SINR Interference Model,” in Proc. ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Chicago, Illinois, USA, Sept. 2010.

[5] Y. Xi and E. M. Yeh, “Throughput Optimal Distributed Power Control of
Stochastic Wireless Networks,” IEEE/ACM Transactions on Networking,
vol. 18, no. 4, pp. 1054–1066, Aug. 2010.

[6] Z. Guan, T. Melodia, D. Yuan, and D. Pados, “Distributed Spectrum
Management and Relay Selection in Interference-Limited Cooperative
Wireless Networks,” in Proc. ACM International Conference on Mobile
Computing and Networking (MobiCom), Las Vegas, USA, Sept. 2011.

[7] D. Yang, X. Fang, and G. Xue, “Truthful Auction for Cooperative
Communications,” in Proc. ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), Paris, France, May 2011.

[8] M. Hanawal, E. Altman, and F. Baccelli, “Stochastic Geometry based
Medium Access Games,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM), Orlando, FL, March 25-30,
2012.

[9] G. Scutari, F. Facchinei, P. Song, D. Palomar, and J.-S. Pang, “Decom-
position by Partial Linearization: Parallel Optimization of Multi-Agent
Systems,” IEEE Trans. on Signal Processing, (submitted Jan. 2013).
Available at http://arxiv.org/pdf/1302.0756v1.pdf.

[10] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Distributed
Dynamic Pricing for MIMO Interfering Multiuser Systems: A Unified
Approach,” in Proc. of International Conference on NETwork Games,
COntrol and OPtimization (NetGCooP 2011), October 12-14, 2011,
Paris, France.

[11] T. S. Rappaport, Wireless Communications. USA: Prentice Hall PTR,
1996.

[12] Z. Guan, T. Melodia, and G. Scutari, “To Transmit or Not
To Transmit? Distributed Queueing Games in Interference-
limited Wireless Networks,” Technical Report, available at:
http://202.194.20.8/guan/tec rpts/TR QueueGame.pdf.

[13] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless
Networks, Part I: Theory. USA: Now Publishers Inc, 2009.

[14] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for n-
person Games,” Econometrica, vol. 33, no. 3, pp. 520–534, Jul. 1965.

[15] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Monotone
Games for Cognitive Radio Systems,” in Distributed Decision-Making
and Control. Eds. Anders Rantzer and Rolf Johansson, Lecture Notes
in Control and Information Sciences Series, Springer Verlag, 2011.

[16] G. Scutari, F. Facchinei, J.-S. Pang, and D. Palomar, “Real and Complex
Monotone Games,” IEEE Trans. on Information Theory, (submitted
November 2012). Available at http://arxiv.org/abs/1212.6235.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. USA: Athena Scientific, 1997.

408


