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Abstract—Terahertz (THz)-band communications has been
envisioned as a key technology to support ultra-high-data-rate
applications in 5G-beyond (or 6G) wireless networks. Compared
to the microwave and mmWave bands, the main challenges with
the THz band are in its i) large path loss hence limited network
coverage and ii) visible-light-like propagation characteristics
hence poor support of mobility in blockage-rich environments.
This paper studies quantitatively the applicability of THz-band
communications in mobile blockage-rich environments, focusing
on a new network scenario called FlyTera.

In FlyTera, a set of hotspots mounted on flying drones
collaboratively provide data streaming services to ground users,
in the microwave, mmWave and THz bands. We first provide a
mathematical formulation of FlyTera, where the objective is to
maximize the network spectral efficiency by jointly controlling
the flight of the drone hotspots, their association to the ground
users, and the spectrum bands used by the users. To solve
the resulting problem, which is shown to be a mixed integer
nonlinear nonconvex programming (MINLP) problem, we de-
sign distributed solution algorithms based on a combination of
echo state learning and reinforcement learning techniques. An
extensive simulation campaign is then conducted with SimBAG, a
newly developed Simulator of Broadband Aerial-Ground wireless
networks. It is shown that no single spectrum band can meet the
requirements of high data rate and wide coverage simultaneously.
Moreover, from the network-level point of view, THz-band
communications can significantly benefit from the mobility of
the flying drones, and on average 4 − 6 times higher (rather
than lower) throughput can be achieved in mobile than in static
environments.

Index terms— Terahertz Band; Millimeter-wave Band; Mir-
cowave Band; Wireless Drone Networks; Echo State Learning.

I. INTRODUCTION

Communications in the terahertz band (i.e., THz, with
frequency ranging from 100 GHz to 10 THz) is a key
technology to meet the increasing demands of bandwidth-
hungry applications in 5G-beyond and the envisioned 6G
wireless networks, e.g., wireless virtual/augmented reality [1].
Compared to lower frequency bands, e.g., sub-6 GHz and
mmWave bands, there are two main challenges with the
THz band. First, its communication range is significantly
reduced because of the large signal attenuation in THz band
in radio in-air environments. For example, the attenuation
due to water vapor and oxygen absorption is approximately
0.6 − 1000 dB/km for THz band, while it is 0.01 dB/km

at sub-6 GHz band and 0.3 − 0.6 dB/km for the mmWave
band [2]. Second, the THz links can be easily blocked because
of the visible-light-like directional waves in extremely high
frequency range.

In the past few years, significant research efforts have
been directed towards addressing these challenges, focusing
on either THz or mmWave bands. For example, in [3], [4]
Han et al. propose a multi-wideband waveform design for the
THz band, which improves the communication distance by
dynamical varying the rate and the transmit power on each sub-
window. The concept of ultra-massive MIMO communications
was studied in [5] to increase the communication distance
and the achievable capacity of THz-band communications. In
mobile environments, fast beam search and alignment schemes
have been proposed in [6]–[9]. For example, Hassanieh et al.
propose Agile-Link in [6], which can provably find the optimal
direction in logarithmic number of measurements. BeamSpy
is proposed in [8] to instantaneously predict the quality of
mmWave beams without the costly beam searching. Readers
are referred to [10], [11] and references therein for an excellent
survey of the main results in this area.

Most of these above discussed work require to redesign the
lower layers (i.e., physical and link) of the communicating
devices’ protocol stack, and hence are not backward compat-
ible. Moreover, these work either focus on only single link or
static networking scenarios, while the applicability of THz-
band communications for mobile wireless networking has not
been thoroughly explored so far.

Novelty and Contributions. This paper aims at under-
standing from a network perspective the applicability of THz-
band communications and how it can complement the lower-
frequency bands in mobile blockage-rich environments. In-
spired by the newly emerging drone cells [12], in this paper
we focus on a network scenario called FlyTera, where a set
of hotspots mounted on flying drones collaboratively provide
data streaming services to ground users in the microwave,
mmWave and THz bands. We consider FlyTera because the
drone hotspots can be deployed dynamically at network run
time, and hence i) it is more likely for them to establish line-of-
sight (LOS) links to their users in blockage-rich environments;
and ii) the network coverage and spectral efficiency can be
enhanced by dynamically deploying more drone hotspots in
areas with higher user density and higher traffic demand.978-1-7281-1062-2/20/$31.00 2020 c© IEEE



There are two major challenges to address in FlyTera.
First, it is challenging for the distributed drone hotspots
to coordinate with each other to achieve extended network
coverage while still maintaining high-data-rate wireless links.
This is because a drone hotspot may fly away from the ground
network infrastructure when it moves closer to the users,
hence reducing the data rate of the backhaul link. Second,
the spectrum access and association strategies of the ground
users are closely coupled with the drone hotspot locations and
the interference levels on each spectrum band. This makes
it both essential yet challenging to achieve a good tradeoff
between network coverage and network spectral efficiency.
To the best of our knowledge, this is the first work studying
the joint access and flight control by jointly considering the
microwave, mmWave and THz bands in mobile blockage-rich
environments.

We claim the following three main contributions:
• We first formulate mathematically the control problem in

FlyTera, where the objective is to maximize the network-
wide spectral efficiency by jointly determining the flight
of the drone hotspots, their association to the ground
users, and the spectrum bands used by the users. It
is shown that the resulting problem is a mixed integer
nonlinear non-convex programming (MINLP) problem.

• We design distributed algorithms to solve the MINLP
problem based on a combination of the echo state learning
and reinforcement learning techniques. The echo state
learning is shown to be able to predict the optimal
movements for the drone hotspots with nearly-constant,
low computational complexity in dynamic network envi-
ronments.

• We develop a new event-driven, universal broadband
simulator called SimBAG for integrated aerial-ground
wireless networking. An extensive simulation campaign
has been conducted based on SimBAG, which proves
the great potential of THz-band communications from a
network point of view. Results indicate that significantly
(4−6 times) higher throughput can be achieved by THz-
band communications in mobile than in static networks.

The rest of the paper is organized as follows. In Section II, we
discuss the related work. In Section III, we present the system
model and problem formulation. The distributed algorithm
design is described in Section IV, and in Section V we discuss
the development of SimBAG and analyze the performance
evaluation results. Finally, we draw the main conclusions in
Section VI.

II. RELATED WORK

Drone-assisted spectrum access has drawn significant re-
search attention [13]–[22]. For example, in [13] Yang et al.
propose prediction methods for path loss and delay spread
in air-to-ground millimetre-wave channels based on machine
learning. In [14], the authors propose a tractable three-
dimensional (3D) spatial model for evaluating the average
downlink performance of unmanned aerial vehicle (UAV)
networks in the mmWave bands. Zhu et al. realize in [15]

flexible coverage by exploring 3D beamforming for mmWave
UAV communications with a phased uniform planar array. In
[16], Gapeyenko et al. investigate the use of UAVs to mitigate
the impact of blockage on the backhaul links. In [17], the
authors propose a fast beam tracking scheme to achieve high-
quality communications in the mmWave band. Xiao et al.
explore in [18] the use of mmWave spatial-division multiple
access to improve the cellular network capacity. In [19], the au-
thors evaluate the performance of the UAV-assisted mmWave
network in urban environments utilizing access points carried
by UAVs. In [20], Feng et al. propose a spectrum management
architecture and evaluate the performance of the proposed
mmWave based wireless backhaul in UAV-assisted cellular
networks. In [21], Chen et al. study the resource management
for virtual reality (VR) appliations in UAV-enabled LTE over
unlicensed (LTE-U) network. Please refer to [22] for an
excellent survey of the main results in this area. Different from
these work, in this paper we focus on a new network scenario
called FlyTera, where drone hotspots and ground users are
allowed to operate in the microwave, mmWave and THz bands,
and study how different spectrum bands complement each
other in mobile blockage-rich environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In FlyTera there are a set of ground and drone base stations
collaboratively providing access services to ground users in the
microwave band fmc, mmWave band fmm, and THz band f tz.
Define the set of spectrum bands F as F , {fmc, fmm, f tz}.
Denote Bgrd,Bfly and U as the sets of the ground base
stations (GBS), flying drone base stations (FBS) and users,
respectively. Let B represent the set of all the base stations
and B̃ the set of all the nodes, i.e., B = Bgrd ∪ Bfly and
B̃ = B∪U . Our objective is to, given the blockage distribution
in the network area, maximize the network spectral efficiency
by jointly controlling the flight of the FBSs, their association
with the ground users, as well as the spectrum bands used by
the users. Next we describe the blockage, link and spectrum
access models sequentially.

A. Blockage Model

Let K represent the set of blockages in the network. As
illustrated in Fig. 1, each blockage k ∈ K is represented as a
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Fig. 1: Illustration of the blockage model in FlyTera.



rectangle of dimensions Lk×Wk×Hk, with Lk, Wk and Hk

being the length, width and height of the blockage, respec-
tively. Denote Ck as the center of blockage k. The orientation
of blockage k, denoted as θk, is considered to be uniformly
distributed in [0, 2π]. Define Pblk

k (Ck, Lk,Wk, Hk, θk) as the
set of points contained in blockage k.

Let codi = (xi, yi, zi) denote the coordinate vector of node
i ∈ B̃ (the phone in Fig. 1), with xi, yi and zi being the
x-, y- and z-axis components, respectively. Similarly, denote
codj as the coordinate vector of node j ∈ B̃ (the drone in
Fig. 1). Further define Pseg

ij as the point set of the segment
connecting nodes i and j. Finally, use I(codi, codj , k) to
indicate whether blockage k is blocking the link between
nodes i and j, with I(codi, codj , k) = 1 if yes, i.e., Pseg

ij ∩
Pblk
k (Ck, Lk,Wk, Hk, θk) 6= φ, and I(codi, codj , k) = 0

otherwise. Then, given the set K of blockages, the total number
of blockages in the link between nodes i and j, denoted as
Ki,j , can be expressed as

Ki,j =
∑
k∈K

I(codi, codj , k), ∀i, j ∈ B̃. (1)

B. Link Model

In this section we describe the interference model focusing
on ground users in U , while the model can be derived similarly
for flying base stations in Bfly. To this end, we first describe
the path loss model.

Path Loss. Denote Li,j(f) as the path loss between nodes
i, j ∈ B̃ operating in frequency band f ∈ F . Then Li,j(f)
can be modelled as in [23]

Li,j(f) = β
Ki,j

0

(
4πf

C

)2

(di,j)
αi,j(f) (2)

where C is the speed of light, αi,j(f) is the path-loss exponent
for the link between nodes i and j in frequency band f , Ki,j

defined in (1) represents the number of blockages in the link,
β0 ∈ [0, 1] is the per-blockage absorption coefficient [24]
[25], and finally di,j = di,j(codi, codj) denotes the distance
between nodes i and j, i.e.,

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (3)

given coordinate vectors codi and codj defined in Sec-
tion III-A for nodes i and j, respectively.

Microwave-Band Link. Denote γmc
u as the SINR of ground

user u ∈ U if it receives on the microwave frequency band
fmc, then γmc

u can be expressed as

γmc
u =

Pmc
i(u)Li(u),u(fmc)∑

j∈Bmc/i(u)

Pmc
j Lj,u(fmc) +Nmc

0

(4)

where Bmc ⊂ B represents the set of BSs operating on
this band, and i(u) ∈ Bmc represents the serving BS of
user u ∈ U ; Pmc

i(u) and Pmc
j are the transmission power

of the serving BS i(u) and interfering BS j ∈ Bmc/i(u),
respectively; Li(u),u(fmc) and Lj,u(fmc) are the path loss
defined in (2), and finally Nmc

0 is the power of noise at

node u in the microwave band. Let Umc
i(u) ∈ U represent the

set of users served by BS i(u) in this band, and consider
that its transmission time is shared among the users it serves
based on time-division multiple access (TDMA). Then the rate
achievable by user u in this band, denoted as Ru(fmc), can
be written as

Ru(fmc) =
Bmc

|Umc
i(u)|

log2(1 + γmc
u ), (5)

where |·| represents the cardinality of a set, i.e., the number of
users served by BS i(u) in this frequency band for our case.

MmWave-Band Link. Let Pmm
i(u) denote the transmission

power of the serving base station of user u (i.e., i(u)) in the
mmWave band. Further denote Umm

i(u) ∈ U as the set of users
served by BS i(u) and |Umm

i(u)| as the number of users in Umm
i(u) .

Different from the microwave band, where the BS serves its
users based on TDMA, in mmWave band the BS is able to
serve the users simultaneously with the directional mmWave-
band links. Let Pmm

i(u),u′ represent the transmission power of
BS i(u) allocated to user u′ ∈ Umm

i(u) , then we have∑
v∈Umm

i(u)

Pmm
i(u),v ≤ P

mm
i(u) , ∀u ∈ U

mm. (6)

The received SINR of user u ∈ U in this band, denoted as
γmm
u , can then be written as

γmm
u =

Pmm
i(u),uLi(u),u(fmm)Gmm

maxG̃
mm
max∑

u′∈Umm/u

Pmm
i(u′),u′Li(u′),u(fmm)Gmm

i(u′),uG̃
mm
u,i(u′) +Nmm

0

(7)

where Umm represents the set of all the users operating in the
mmWave band, and Nmm

0 is the power of noise in this band
at each user. In (7), Li(u),u(fmm) represents the path loss
between BS i(u) and user u in the mmWave band; Gmm

i(u′),u

and G̃mm
u,i(u′) represent the transmit gain of BS i(u′) and

receive gain of user u respectively; Gmm
max and G̃mm

max denote the
maximum transmit gain of BSs and maximum receive gain of

(a) (b)
Fig. 2: Interference model for the mmWave-band links: (a) inter-BS
interference; (b) intra-BS interference.



users, respectively. Denote the resulting link rate as Ru(fmm)
for user u, then we have

Ru(fmm) = Bmm log2(1 + γmm
u ), (8)

where Bmm is the bandwidth of the mmWave frequency band.
We consider sectorized interference model as in [26] to

determine the transmit and receive gains, i.e., Gmm
i(u′),u and

G̃mm
u,i(u′) in (7). As illustrated in Fig. 2, let θ ∈ [−π, π]

denote the offset angle of the antenna boresight direction of
user u with respect to the reference direction, and θ′ as the
offset angle for the drone base station. Here, the reference
direction refers to the direction along which the transmitting
and receiving beams are perfectly aligned, as indicated by the
dashed beams in Fig. 2. Denote θu and θi(u′) as the beamwidth
of user u and BS i(u′), respectively. Then, the transmit gain
for BS i(u′) and receive gain of user u can be determined as
follows, taking Fig. 2(a) as an example:

Gmm
i(u′),u =

{
Gmm

max, if θ′ ≤ θi(u′)

Gmm
min, otherwise

(9)

for the transmit gain, and

G̃mm
u,i(u′) =

{
Gmm

max, if θ ≤ θu
Gmm

min, otherwise
(10)

for the receive gain.
THz-Band Link. The SINR achievable by a user in the THz

band can be derived similarly as in (7)-(10) for the mmWave
band, except that only LOS transmissions will be considered
because of the significantly higher path loss. Then, we have
Ki,j = 0 in (2) and the path loss can be rewritten as

Li,j(f
tz) =

(
4πf tz

C

)2

(di,j)
αi,j(ftz), (11)

where di,j defined in (3) is the distance between nodes i and
j, and αi,j(f tz) represents the path loss exponent in the THz
band. Denote the resulting SINR as γtz

u for user u and the
corresponding link rate as Ru(f tz).

C. Spectrum Access Model

Consider single-band spectrum access for the ground users
and multi-band spectrum access for the base stations, i.e., each
user is allowed to use at most one frequency band at the same
time, while each base station is able to serve multiple users
in different frequency bands. Then we have∑

f∈F

ψ(u, f) ≤ 1, ∀u ∈ U (12)

where ψ(u, f) is the frequency selection function, with
ψ(u, f) = 1 if frequency band f is used by user u, and
ψ(u, f) = 0 otherwise. Then the overall access link rate of
user u ∈ U , denoted as Rac

u , can be expressed as

Rac
u =

∑
f∈F

ψ(u, f)Ru(f), (13)

where Ru(f) is defined in Section III-B, with f ∈ F . Since
the aggregate access link rate of each flying base station

(FBS) should not exceed the rate of the backhaul link, i.e.,
the link between FBS and the ground network infrastructure,
the adjusted access link rate, denoted as R̃ac

u for user u ∈ U ,
can be given as

R̃ac
u = min

( ∑
v∈Ui(u)

Rac
v , R

bk
i(u)

)
︸ ︷︷ ︸
Minimum of access and

backhaul link rates

Rac
u∑

v∈Ui(u)

Rac
v︸ ︷︷ ︸

Proportional rate

allocation among users

(14)

where Rbk
i(u) is the backhaul link rate of user u’s serving base

station, i.e., i(u) and Ui(u) is the set of users sharing the base
station i(u). In (14), the first item on the right-hand side is
used to determine the minimum rate of the access and backhaul
links, and the objective of the second item is to allocate the
resulting minimum rate among the users sharing the same
backhaul link.

D. Problem Statement

Finally, the control objective in FlyTera is to maximize the
aggregate rate of all the users in U , by jointly controlling the
flight of the flying base stations in Bfly, their association with
the ground users, as well as the spectrum band selection of
the users, under the constraints of single-band access for the
users and wireless backhual links for the flying base stations.
Let cod = (codi)i∈B̃ represent the coordinate vector of all
the nodes in the network, and ψ = (ψ(u, f))f∈Fu∈U denote the
spectrum band selection vector of the users. Further denote
ζ = (ζui)

i∈B
u∈U as the association vector, with ζui = 1 if user u

is associated with BS i and ζui = 0 otherwise. If we consider
single-home association for users, i.e., each user is allowed to
be associated to at most one base station, then we have∑

i∈B
ζui ≤ 1, ∀u ∈ U . (15)

The FlyTera control problem can then be formalized as

Given : U , Bfly, Bgrd, F
Maximize
cod, ψ, ζ

∑
u∈U

R̃ac
u (cod, ψ, ζ)

Subject to : (1)− (15)

(16)

where R̃ac
u (cod, ψ, ζ) = R̃ac

u defined in (14) is the adjusted
access link rate of user u.

The network control problem formulated in (16) is a mixed
integer nonlinear nonconvex (MINLP) problem, because of
the involved mathematical expression of R̃ac

u (cod, ψ, ζ)
and the binary association variables and frequency selection
variables. Given an arbitrary such problem, it is still an open
problem to obtain the global optimum solution with polynom-
inal computational complexity. Recall in Section I that in this
work our objective is to investigate the applicability of THz-
band communications in mobile blockage-rich environments
and how the THz band can complement the lower-frequency
bands. To this end, in next section we solve problem (16)
by designing distributed algorithms based on a combination
of echo state learning and reinforcement learning, and then
evaluate the performance of the algorithms in Section V.
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Fig. 3: Diagram of the distributed algorithm design based on a combination of echo state learning and reinforcement learning.

IV. DISTRIBUTED SOLUTION ALGORITHMS

The framework of the distributed solution algorithm design
is illustrated in Fig. 3, where there are three major modules,
i.e., i) ESN-based Utility Prediction (ESN-Pdt), ii) ESN-based
Utility Optimization (ESN-Opt), and iii) RL-based FlyTera
Control (RL-Ctl). The objective of ESN-Pdt is to predict the
utility for each FBS by approximating the mapping from the
network control variables, i.e., cod, ψ and ζ in (16), to
the individual utility function R̃ac

u (cod, ψ, ζ) based on
echo state learning. Then, given the predicted utilities each
FBS determines its own next-step action based on the ESN-
Opt module. Finally, the RL-Ctl module is used to achieve a
tradeoff between exploring and exploiting in favor of higher
network spectral efficiency.

A. ESN-Pdt: ESN-based Utility Prediction

In FlyTera with distributed flying drone base stations, it
is hard to obtain the complete and up-to-date network status
information required for the base stations to derive the exact
mathematical expression of R̃ac

u (cod, ψ, ζ). To address this
challenge, in this work we approximate the individual utility
function R̃ac

u (cod, ψ, ζ) based on echo state network (ESN).
ESN is a new type of reservoir computing techniques for
training recurrent neural networks [27]. Roughly speaking,
as shown in Fig. 3, the objective of an ESN is to model
approximately the mapping from the input signals to the output
signals of a system, by training its input weights Win, the
reservoir weights W and output weights Wout using a sig-
moidal transfer function (e.g., hyperbolic tangent). Compared
to traditional Neural Networks, which are computationally
expensive, it is incredibly simple to train ESNs, while they
are still able to model the complex time-varying behaviors
of dynamical systems. Next we describe the ESN-Pdt module
(the left block in Fig. 3) design in FlyTera.

The ESN-Pdt module consists of four components: Agent,
Input, Action and Reward Function. In ESN-Pdt, the Agent
refers to individual BSs in Bfly, i.e., each BS is endowed with
an ESN-Pdt module for approximating its own utility function.
Divide the time into a set of consecutive time slots T . Then,
in each time slot t ∈ T , each BS i ∈ Bfly feeds an Input
(denoted as inpti) and a candidate Action (denoted as actti)

to its ESN-Pdt module, which will then output the Reward
Function value of the BS.

Input Design. The input of BS i’s ESN-Pdt module in time
slot t, defined as inpti , {cod

t
−i, ψ

t, ζt}, comprises of
the locations of all the other BSs codt−i = (codtj)j∈Bfly/i

with codtj being the coordinate vector of BS j in time slot
t, the association profile of the ground users ζt as well as
their spectrum band selection strategies ψt (confer Section III
for the definitions of codtj , ψ

t and ζt)1. The dimension of
inpti increases quadratically with the scale of the network
because of the association vector ζt. This can slow down the
training of the ESN-Pdt module and hence degrade the utility
approximation accuracy in large-scale networks. To address
this challenge, we reform inpti by reducing the number of
primal variables in the input vector based on the following
three simple but effective policies:
• Policy 1: Shortest-Distance-Based Association. Based on

this policy, each ground user u ∈ U is associated to its
nearest base station, i.e., the serving base station i(u) is
selected so that

i(u) = arg min
i′∈Bfly

di′u(codi′ , codu), ∀u ∈ U , (17)

where di′u(·, ·) calculates the distance between two nodes
as defined in (3).

• Policy 2: Threshold-based Spectrum Selection. Two dis-
tance thresholds are adopted, denoted as dmc

0 and dtz
0

with dtz
0 < dmc

0 , for the microwave and THz bands,
respectively. Then, the microwave band will be selected
for user u if du,i(u), i.e., the distance between user u
and its serving base station i(u) determined based on
Policy 1, satisfies du,i(u) ≥ dmc

0 ; if du,i(u) ≤ dtz
0 , the

THz band will be selected; otherwise, user u will use the
mmWave band if dtz

0 < du,i(u) < dmc
0 .

• Policy 3: Network Area Discretization. The network area
is divided into a number Nx × Ny × Nz of three-
dimensional rectangles, each with Lx

Nx
, Ly

Ny
and Lz

Nz
for

width, length and height, respectively. Denote N as the
set of the resulting rectangles. Each rectangle n ∈ N is
represented using a vector rectn = (c̃odn, idn), where

1In previous sections, superscript t has been omitted in notations for the
sake of convenience.



c̃odn is the coordinate vector of the center point of
rectangle n ∈ N , and idn = 0, 1, · · · , Nx×Ny×Nz−1
is the index of the rectangle.

Based on Policies 1 and 2, the association and spectrum band
selection vectors (i.e., ψt and ζt}) can be determined given
the coordinates of all the BSs (i.e., codt) in each time slot
t. As a result, codt−i becomes the only primal variable in
inpti. The dimension of inpti can be further reduced based on
Policy 3 by mapping each component of codt−i to the index
of the corresponding rectangle. Finally, the input of the ESN-
Pdt module can be rewritten as inpti = (idtj)j∈Bfly/i, with idtj
being the index of BS j’s rectangle in time slot t.

Action and Reward. Given input inpti for the ESN-Pdt
module for BS i in time slot t, BS i makes its action decisions
and observes an output of the action. To this end, BS i chooses
to move to a new rectangle in N except those occupied by
other BSs. Hence, the set of actions for BS i, denoted as actti
for time slot t, can be written as

actti = {idm|m ∈ N/{nt(j), j ∈ Bfly/i}}, (18)

where nt(j) represents the rectangle index of BS j in time
slot t. The corresponding reward, denoted as rwdti(idm), is
determined by the aggregate rate achievable by the users it
serves at new location idm, i.e.,

rwdti(idm) =
∑

v∈Ui(idm)

R̃ac
v , (19)

where R̃ac
v defined in (14) is the adjusted access rate of user v

and Ui(idm) is the set of users served by BS i at rectangle
idm.

B. ESN-Opt: ESN-based FlyTera Optimization

The job of the ESN-Opt module (the middle block in Fig. 3)
is to determine the optimal next-step location for each BS,
given the locations of all the other BSs. The agents and inputs
of this module is the same as in ESN-Pdt, that is, ESN-Opt is
also operated in individual flying BSs, and each BS takes the
location information of the other BSs (i.e., inpti defined above)
as its input. Differently, the action set of BS i, denoted ãct

t

i

contains only single rectangle in each time slot t (its current
rectangle), i.e., ãct

t

i = {idti}. The reward, denoted as r̃wd
t

i,
is the maximum utility that BS i may achieve by moving to
a new rectangle in next time slot, i.e.,

r̃wd
t

i = max
id∈actti

rwdti(id) (20)

where rwdti and actti are the reward and the action set of BS
i’s ESN-Pdt module discussed in Section IV-A. Denote the
resulting optimal next-step rectangle for BS i as idt∗i .

C. RL-Ctl: Reinforcement Learning Based Flight Control

Based on a combination of the ESN-Pdt and ESN-Opt
modules discussed above, each FBS determines its own best
location for the next time slot. This may lead to a local
optimum of the FlyTera control problem (16), which is not

desirable. In favor of high network spectral efficiency, in this
work we use reinforcement learning to guide the exploration
and exploitation in the flight control of the BSs. Reinforcement
learning (RL) [28] has been widely used to solve very complex
problems that cannot be solved by conventional techniques. A
RL consists of an environment and a set of agent states of
the environment. The same as above discussed ESN modules,
as shown in Fig. 3 (the right block), the RL agents are also
the flying base stations, the environment is the discretized
network area. The state of each agent i is denoted as codti
in time slot t, and the feedback reward from the environment
is denoted as rwdti. Then for any action actti taken by the
agent, let codt+1

i and rwdt+1
i denote the corresponding state

and reward at time t + 1. The output of the RL-Ctl module
is the next optimal action denoted as actt∗i for the agent i in
time slot t. In this paper, we design the RL-Ctl module based
on ε-greedy exploration strategy [28].

Theorem 1. If mixed strategies are adopted by the FBSs, the
distributed algorithm proposed in this section converges to
a stationary network operating point at which no FBS has
incentive to fly to other locations if the other FBSs do not.

Proof. Given the finite set of actions actti defined in (18),
let ∆(actti) represent the set of all probability distributions
over the elements of actti, and πi = [πi(id1), · · · , πi(id|N |)]
with πi ∈ ∆(actti) denoting the probability distribution
used by BS i ∈ B to select an action from its action set
actti, and |N | being the cardinality of the set of rectangles
defined in Section IV-A. Then, the mixed strategy profile for
BS i, denoted as π∗i ∈ ∆(actti),∀ i ∈ B, can be given
as π∗i = [π∗i (id1), · · · , π∗i (id|N |)]. The flight control and
spectrum access problem (16) can then be reformulated as a
non-cooperative game, and to prove this theorem it is sufficient
to show that the game converges to a mixed Nash Equilibrium
(NE) with mixed strategy probability [29]. Details of the proof
are omitted due to limit of space.

�
V. PERFORMANCE EVALUATION

In this section, we first verify the effectiveness of the
distributed solution algorithms proposed in Section IV and
then analyze the performance of FlyTera. As of today, there are
still no publicly available testbed or simulator that can support
experiments of integrated aerial-ground wireless networking
in the microwave, mmWave and THz spectrum bands. In this
work we conduct simulations over a newly designed simulator
called SimBAG.

A. SimBAG Design

SimBAG is a Python-based event-driven simulator for
broadband integrated aerial-ground wireless networks. Sim-
BAG comprises of four modules: Network Configuration
Module (NCM), Network Element Module (NEM), Discrete
Event Driver (DED), and Custom Algorithm Module (CAM).
Through the NCM module, one can configure various network
parameters, including the number of BSs and users, the
bandwidth of each spectrum band, the transmission power of



0 25 50 75 100 125 150 175 200
Network Run Time (slot)

100

150

200

250

300

350

400

FB
S 

Ra
te

 (M
bp

s)

Measured Rate
ESN-Pdt Prediction

Fig. 4: Accuracy of rate prediction based on the ESN-Pdt module.

the nodes, the simulation time, among others. Experimenters
can also specify the pattern following which the blockages
are generated and the drone base stations are deployed, e.g.,
Poisson Point Process and uniform distribution. The NEM
module defines the classes for all the network elements, includ-
ing Network, Ground Base Station, Flying Base Station,
Blockage, Links, Interference, among others. These classes
have been designed in a hierarchical manner. At the highest
level is a general network element class net elmt, which
defines the basic network element attributes and operations
such as registering an element in the network, specifying the
parent and children elements of an element. The DED module
provides the discrete network simulation environment based on
the open-source library SimPy [30]. Finally, the CAM module
hosts the custom-designed network control algorithms, e.g.,
the ENS-Pdt and ESN-Opt algorithms discussed in Section IV.
APIs have been provided for all the four modules. The
source code of the SimBAG project has been released to the
community via GitHub [31].

B. Results and Discussion

Based on SimBAG a FlyTera network has been created with
parameters configured through SimBAG’s NCM module. We
consider a network area of 200 × 200 × 50 m3. The center
frequency is set to 3 GHz, 30 GHz and 300 GHz, and
the bandwidth is set to 2 MHz, 40 MHz and 10 GHz for
the microwave, mmWave and THz bands, respectively. The
transmission power of BSs is set to 1 W, 250 mW and 20mW
for the three bands. The number of BSs varies from 1 to
15 and the same for the users. The threshold distances dmc

0

and dtz
0 are set as 100 m and 10 m, respectively. The results

are averaged over 50 simulations. Next we first evaluate the
accuracy and complexity of the echo state learning algorithm,
and then analyze the throughput achievable with different
spectrum bands.

Accuracy and Complexity. In Figs. 4 and 5 we plot the
accuracy of ESN-Pdt and ESN-Opt, by considering FlyTera
with one base station and 10 users. The input and output
weights of the ESN-Pdt and ESN-Opt in Fig. 3, i.e., Win and
Wout, are initialized randomly. The reservoir weights W are
initialized satisfying the Echo State Property (ESP) [27], which
makes sure that the effect of the initial conditions vanishes
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Fig. 5: Prediction accuracy of the optimal FBS movement based on
the ESN-Opt module.
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Fig. 6: Computational complexity of the ESN-Opt module.

after some time. In Fig. 4, the training data is collected in a
total number of 10000 time slots, and the link rate is measured
by moving the FBSs to random rectangles in each time slot.
The accuracy of the trained ESN-Pdt module is tested in 200
more time slots. It can be seen that ESN-Pdt is able to predict
the rate for FBSs with very high accuracy (98%) in all the
tested time slots. Similarly, high accuracy (99%) can also be
achieved by the ESN-Opt module in Fig. 5, where 9800 time
slots have been used for training and 200 for testing. Here,
the optimal next-step optimal location index is obtained by
exhaustively searching all the rectangles of the network for
each FBS. It is worth mentioning that exhaustive search is
only needed at the training phase of the ESN-Opt module.

The computational complexity of the ESN learning is re-
ported in Fig. 6, taking ESN-Opt as an example while similar
results can be observed for ESN-Pdt. The experiments are con-
ducted on a workstation with Intel(R) Core(TM) i7− 7700K
CPU @ 4.20 GHz, memory of 32.0 GB, and 64-bit Windows
Operating System. It can be seen that the prediction can be
finished in less than 5 ms with different number of users and
FBSs. For example, when the number of FBSs varies from 6
to 14, the average computational time is 4.4 ms, 5.0 ms and
4.2 ms for 5, 7, and 10 users, respectively. Therefore, based
on echo state learning each FBS is able to predict its optimal
movement in each time slot with very low and nearly constant
computational complexity in different network settings.

Performance Analysis. In this experiment we analyze the
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Fig. 7: Sum rate of the network with different number of users.

sum rate performance of the distributed control algorithms
proposed in Section IV. We first consider one FBS and the
number of users varying from 1 to 15 with step of 2. FlyTera
is compared to two benchmark algorithms with fixed BS and
randomly moving BS, respectively. The results are reported in
Fig. 7. We found that the network sum rate can be significantly
increased by FlyTera, with average gain of 24% and 40%
comparing to random movement and fixed FBS. For example,
in the case of 2 users a sum rate of 463 Mbps can be achieved
by FlyTera, which is 261 Mbps and 142 Mbps for random
movement and fixed FBS, respectively. This experiment proves
the superiority of the FlyTera control algorithm.

In the following experiments, FlyTera is evaluated in three
different scenarios: i) mobile FBS, ii) static FBS with mobile
users, and iii) static FBS with static users. In each scenario,
FlyTera is compared with six benchmark spectrum access
schemes: i) microwave band only, (ii) mmWave band only,
iii) THz band only, iv) microwave and mmWave bands, v)
microwave and THz bands, and vi) mmWave and THz bands.
The results are plotted in Fig. 8. As expected, in all scenarios
the sum rate increases with the number FBSs but at different
speeds. For example, in Fig. 8(a) the sum rate increases by
24 Mbps on average by deploying one more FBS in the
microwave band, which are 56 Mbps and 52 Mbps for
the mmWave and THz bands, respectively. The correspond-
ing network spectral efficiency gain are 16 bps/Hz/FBS,
2 bps/Hz/FBS and 3 × 10−3 bps/Hz/FBS for the mi-
crowave, mmWave and THz bands, respectively. Therefore,
although the available bandwidth is much wider, e.g., 10 GHz

for THz vs 2 MHz for microwave in this experiment, both
the mmWave and THz bands cannot be used alone to achieve
orders of magnitude higher network capacity than that of the
microwave band, primarily because of the significantly lower
spectral efficiency.

From these experiments we also find that, which is a
bit surprising, obviously higher rather than lower sum rate
can be achieved by the THz band in mobile than in static
environments. For example, the sum rate is around 500 Mbps
and 370 Mbps with 8 mobile FBSs in Figs. 8(a) and 8(b),
respectively, while it is only less than 100 Mbps in Fig. 8(c)
where both FBSs and users are static. This is without no
reasons. While a single THz link can be easily disconnected
in blockage-rich environments, the problem can be effectively
mitigated in FlyTera by adaptively deploying the flying base
stations so that line-of-sight links can be maintained in most
time. Therefore, it is paramount to exploit the mobility gain
in future wireless networks in the THz band.

Finally, We find that FlyTera achieves the highest sum
rate in all the three tested scenarios, which is 6, 5, and
7 times higher than that using the microwave band only.
Particularly, in Fig. 8(a) obviously higher sum rate can be
achieved with mobile FBSs than simply adding up the rates
of the three single-band cases. For example, in the case of 8
FBSs, the sum rate is around 1650 Mbps for FlyTera, while
274 Mbps, 581 Mbps and 477 Mbps for the microwave,
mmWave and THz bands with the corresponding sum rate of
1332 Mbps. Similar results can also be observed for the cases
using two spectrum bands in Figs. 8(b) and (c). This verifies
the effectiveness and importance of joint flight and spectrum
access control in FlyTera.

In Fig. 9 we show the fairness results considering mobile
and static FBSs and different spectrum access strategies similar
to Fig. 8. We use Jain’s Fairness Index as the measure of
the rate allocation fairness. We can see that, in the case of
microwave band only, the network achieves the best fairness
(0.98), while the data rates of the users are the lowest (Fig.
8). Similarly, when we consider millimeter or terahertz band
only, the fairness indices are 0.6 and 0.7 in the case of mobile
scenario and only 0.4 and 0.5 in static scenario. The same
trend can be observed for the combinations of frequency bands
as well. Finally, we can see that with FlyTera the network
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achieves a fairness index almost the same as that of the
microwave band in mobile scenario, while still achieving the
highest user rate (Fig. 8). This verifies the capability of FlyTera
in achieving a good tradeoff between higher network spectral
efficiency and better network coverage.

VI. CONCLUSIONS

In this paper, we have studied the problem of joint flight
control and spectrum access in mobile blockage-rich envi-
ronments in the microwave, mmWave and THz bands. We
first provided a mathematical formulation of the FlyTera
control problem, which is shown to be a MINLP problem.
Then we designed distributed solution algorithms based on a
combination of echo state learning and reinforcement learning
theories. An event-driven simulator called SimBAG has been
developed, over which the effectiveness and efficiency of
the algorithms are verified and the performance of FlyTera
is analyzed through an extensive simulation campaign. It is
found that the THz-band wireless networks can significantly
benefit from the mobility of FBSs and users in blockage-rich
environments.
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