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Despite current obstacles, smart camera 
networks that offload computationally in-
tensive tasks to remote servers could allow 
energy-efficient 3D and multiview video 
encoding and delivery yet still ensure high-
quality multiple-device video streaming.

E merging 3D, multiview, and stereoscopic video ser-
vices such as 3D cinema or free-viewpoint video can 
offer a considerably higher quality of experience 
than conventional 2D video. Smart camera tech-

nologies will soon make possible similarly novel services 
for mobile users, including 3D video capture and display, 
multiview wireless surveillance, and even glimpses of a 3D 
ocean through an underwater acoustic network.

The tradeoff for innovations like these is computa-
tional intensity. More elaborate videos can consist of up 
to several hundred 2D views,1 requiring encoding and 
transmission that quickly drain a smart camera’s battery.  
Any solutions to this energy problem must stem from 
equally innovative transmission schemes and energy-
efficient network architectures that support high-quality 
3D wireless video streaming in smart camera networks.

SMART CAMERA NETWORKS
Figure 1 shows one such vision of an architecture 
that integrates smart cameras, video streaming, 

and multimedia cloud computing. Cameras continu-
ously off load computationally intensive tasks to a 
remote cloud server, potentially extending battery 
life. The server computes the data and returns re-
sults without compromising compression efficiency 
or video quality.

However, to accommodate a network of multiple 
cameras and display devices, the cloud server must do 
more than process data. Users watching 3D videos are 
apt to interactively request video content in a specific 
view. The cloud server must consider all these views 
concurrently as well as differences among display de-
vices to achieve optimal high-quality scalable video 
streaming in real time.

To better understand the challenges for develop-
ing such architectures and possible solutions that 
meet these requirements, we reviewed current work 
in cloud-enabled smart camera networking and 3D 
wireless video streaming. We looked at architectural 
components that support cloud-assisted video encod-
ing on the client side, cloud-based video decoding on 
the server side, and scalable cloud–client networking. 

Most of the approaches we found are based on 
predictive encoding, which is promising but requires 
complex computations and suffers from choppy video 
streaming in wireless environments. To address these 
drawbacks, we are exploring video networking based 
on compressive sampling, a clean-slate approach to 
video capture, encoding, and decoding in a smart 
camera network.
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VIDEO ENCODING
To exploit bandwidth efficiently, video delivery systems 
encode raw sequences using signal processing tech-
niques to remove spatial and temporal redundancy. 
Encoding 2D video is already complex; motion estima-
tion operations, for example, can account for 90 percent 
of total encoding complexity.

Given that 3D, multiview, and stereoscopic videos consist 
of at least two 2D views (for stereoscopic recording) and may 
run to hundreds of views (for free-viewpoint applications),1,2 
encoding complexity can easily exceed most current mobile 
camera resources. Sony’s Vaio VGN-UX1XN mobile device 
offers a case in point: working at full power using traditional 
2D encoders just to encode different views independently, 
the Sony could process only two to five stereo video frames 

per second (fps)—far from the 30 fps needed for real-time 
video.1 Complexity increases even more when the system 
must encode correlated views at the same time.

Complexity offloading
Consider the video encoding in a single smart camera. To 
enable 3D and multiview encoding, a smart camera can 
offload computationally rich data to the cloud server in 
two ways. It can either send feature information, such as 
the point cloud of the scene’s surface, which the server 
then uses to reconstruct the original scene, or it can send 
a small portion of raw video data, which the server then 
uses to run predefined complex computations, returning 
the computation results to the camera as the basis of fur-
ther encoding the scene. 

Computing results Optimized streaming

Cloud server Display devices

Raw data Request
Cloud computingTask o�oading Interactive watching

Base station Base stationSmart cameraScene of interest

Figure 1. Envisioned architecture to support 3D video streaming in the cloud. The cloud server not only computes raw data 
but also optimizes streaming across individual cameras and display devices.
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Figure 2. Simulcast video encoding. The camera offloads encoded computation to the cloud server by (a) transmitting only 
the reference frame in its entirety and raw samples of the ensuing predictive frames according to (b) a regular or irregular 
triangular mesh that adapts to the object in the image. The server returns computation results to the camera, which then 
finishes the encoding.
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Figure 2 depicts the independent encoding and trans-
mission of a two-view simulcast video, where a traditional 
monoview video encoding format such as MPEG-4, H.264, 
or their high efficiency video coding (HEVC) successor 
is used to encode each view in parallel. For example, a 
group of pictures representing each view might consist 
of a reference frame followed by 30 predictively encoded 
frames. Encoding involves complex motion estimation 
between this reference frame and each predictive frame. 
Offloading requires the camera first to encode the refer-
ence frame independently and transmit it to the cloud 
server, which reconstructs it as a reference for motion es-
timation. Then the camera uploads only a sample of each 
ensuing predictive frame. Figure 2b shows sampling that 
follows a regular or irregular triangular mesh.3 (An irregu-
lar mesh is based on a regular mesh, but is more adaptive 
to image objects.) 

The cloud server estimates motion (distance and direction) 
by comparing these uploaded raw pixels with the reference 
frame to search for the best match. Finally, it returns estima-
tion results to the camera for actual video encoding.

Experiments in a wireless local area network (WLAN) 
using triangular mesh sampling3 proved that, relative 
to local motion estimation (in the camera), offloading 
consumes approximately 30 percent less energy. More 
sophisticated sampling methods, such as sampling the 
boundary of moving objects, could further decrease the 
camera’s energy use.

Challenges and  
possible solutions
Other techniques have proven 
viable in reducing video 
encoding costs. For example, 
preliminary studies show 
that computing the disparity 
among views locally reduces 
video encoding by half.1 
However, computing view 
disparities in the cloud creates 
problems because the server 
has only part of the original 
predictive frame. These down-
sampled frames often make 
view correlation impossible 
because the predictive frame 
of one view cannot serve as 
the reference for other views. 
Uploading additional raw 
data to preserve correlation 
negates any energy savings 
and so is not a solution. 

An a lternat ive a l lows 
cameras to translate motion 
estimation results for one 

view to their own coordinate systems, using geometric 
information such as the camera’s relative position and the 
scene’s depth to correlate views without uploading addi-
tional raw data. More experiments with this alternative 
are required to determine its feasibility.

Cloud computing for 3D video encoding operates under 
the same limitations as any multimedia cloud comput-
ing network. A task is not worth offloading if doing so 
consumes more energy than executing the task locally.4 
Cellular networks, for example, can use more energy 
and incur more delay to offload a task than if the task 
executed in a WLAN.3 Future 4G wireless networks and 
proposed small-cell heterogeneous networks might al-
leviate this problem because they will have much higher 
energy efficiency than current cellular architectures. 

Recent developments in modeling multiview encoding 
efficiency might eventually enable adaptive offloading 
of encoding tasks. Such models take into account video 
content, wireless channel quality, and differences in 
network topologies.2

VIDEO DECODING
Decoding can be accomplished by traditional methods or 
by transcoding a video from one format to another or ren-
dering new views from existing views.

Of the three operations, transcoding is the most 
straightforward because even in multimedia networks, 
display devices often have different decoders, screen 
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Figure 3. Architecture for cloud-assisted rendering. The cloud server considers two refer-
ence views, and rather than transmit a color pixel frame for each view, it generates a depth 
map (gray frames). The camera uses the map to place each pixel in its coordinate system for 
that view, thereby obviating the need to download additional raw data. Red ellipses depict 
occlusion artifacts, which the fusion of the two frames overcomes.
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resolutions, and associated wireless networks. Conse-
quently, the server must stream the same video content 
to different devices in 20 to 30 formats. Transcoding 
a video in an individual format greatly reduces the 
data transmitted, which requires less energy from the 
camera networks. 

Integrating cloud computing with traditional decoding 
operations or rendering methods is less straightforward 
and might require a clean-slate video encoding and  
decoding technology.

Cloud-based rendering
Rendering generates a virtual image or video frame from 
existing feature information. It is central to free-viewpoint 
video streaming, since the server may not have the re-
quested view among its available candidate views, and is 
already burdened with transmitting the original video in all 
the requested views it does have. For 3D video streaming, 
transmitting feature information such as a 3D mesh– or 
point-based scene representation can require network 
bandwidths up to 1 Gbps, which is outside the realm of 
current mobile environments.

Rendering video frames using cloud computing offers a 
potential solution. The idea is to select from the candidate 
views in the cloud one or more reference views closest to 
the user-requested view and then to transmit only those 
selected reference views. The user then reconstructs the 
new video accordingly. In Figure 3, for example, the server 
considers two reference views, and, instead of transmitting 
the color pixel frame for each one, it generates a depth map 
that contains information about the distance of object sur-
faces from a viewpoint.5

With depth map information, the camera can generate a 
virtual view by warping the received reference views. Warp-
ing consists of mapping each view pixel to the requested 
view’s coordinate system and then copying the pixel value. 
Figure 3 shows warping for two reference views: a′ warped 
from a and b′ warped from b, with a ′ + b′ being the 
fusion of a′ and b′.5 Fusing two warped views compen-
sates for any occlusion artifact (red ellipses), which occurs 
when part of the scene’s surface appears in one view but 
cannot be seen in other views.

To select a reference view, the server considers the 
user’s view-changing statistics and opts for a view that 
maximizes the probability of rendering the requested view 
within a predefined warping error threshold. That is, 

Maximize Prob[rend_err (V
r1
, V

r2
, Vreq) ≤ ε ]

V
r1
, V

r2 
∈ Vcld,

where V
r1
 and V

r2 are the two reference views, Vcld 
is the 

available set of views, rend_err is the warping error, and ε 
is the predefined threshold. 

Cloud optimization can minimize reference view up-
dates, which helps avoid extra response delay. That is, 

T T
R
BW

rtt,delay proc

where Tproc is the cloud processing time from the moment 
the server receives an update request, R is rate budget, BW 
is available bandwidth, and rtt is the round-trip time. In 
one optimization scheme,5 the cloud server predicts the 
users’ watching behavior. Another scheme6 reduces re-
sponse delay further by rendering in the cloud and on the 
client side simultaneously and maximizes reconstructed 
video quality by jointly optimizing the rate-budget allo-
cation between source and channel coding and between 
texture and depth frame coding.

Challenges and possible solutions
When broadcasting the same 3D video in free-viewpoint, 
different watching preferences can create complex cou-
plings among users, views, textures, depth, and the 
underlying wireless networks. Optimization in such sce-
narios is challenging, particularly since most existing 
research still focuses on single-user cases. Recent work 
in performance analysis and modeling for adaptive 3D 
video rendering could provide some solutions.7,8

Reducing response delay is another concern. A possible 
solution is to use a cloudlet server, which essentially moves 
computations to the edge of the wide area networks. The 
round-trip delay then becomes much lower than that with 
remote cloud servers.9

SCALABLE VIDEO NETWORKING
Unlike single users, users of video networking applica-
tions must share limited transmission resources in parallel 
during sessions. To leverage the efficiency of multimedia 
cloud computing, the cloud server might record and even 
predict each session’s video content characteristics, band-
width variability, and users’ watching preferences and 
frequency of generating video content. The server must 
then schedule accordingly so as to optimize video stream-
ing operations.

2D video
Scalable video streaming has long been a part of 2D video 
streaming networks. Streaming optimization schemes 
adapt frame rate, resolution, or quantization steps to 
varying network bandwidth. Traditional video encod-
ing standards such as MPEG-4 and H.264/AVC encode a 
video sequence into several profiles: a primary profile 
that can be decoded independently to reconstruct basic 
video quality, and various dependent profiles to enhance 
that quality.

The prevalent HTTP Adaptive Streaming (HAS) frame-
work suggests delivering streaming video services through 
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a cloud-client architecture that splits a video sequence into 
a series of video chunks. The cloud server encodes and 
transcodes each chunk into several versions with differ-
ent rates. It then adapts streaming rates to bandwidth by 
dynamically selecting the streaming rate and a requesting 
frequency profile for each user.10 

3D video
3D video streaming adds dimensions of scalability to 2D 
schemes, such as quality and complexity. For example, 
the cloud server can dynamically adjust the number of 
views streamed to users (quality) and encode the primary 
and auxiliary views with different granularity (complex-
ity). It can also apply the scalable strategies of 2D video to 
different views and to the texture and depth frames for 
each view.

Considering influencing factors in tandem can increase 
scalability. In content-aware scalability for multiview video 
streaming,11 the idea is to ensure that the cloud server 
always delivers salient and perceptually sensible visual 
data with high accuracy even over weak wireless chan-
nels or congested networks. A visual attention model 
analyzes the visual features of each video view jointly, si-
multaneously considering shape, motion, color, and depth 
characteristics. The server uses the results of this analysis 
to ascertain the content’s importance level and optimize 
streaming strategies.

Networking opportunities and challenges
Recent developments in wireless transmission and net-
working show promise in furthering scalability in 
cloud-enabled video streaming. In one approach,12 the 
cloud server uses network coding to combine video pack-
ets and transmits the combined packets over cellular links 
(3G and 4G) to smartphones. 

The smartphones can receive different sets of packets, 
which they then exchange ad hoc with each other through 
Wi-Fi or Bluetooth links. Whenever a smartphone receives 
a certain number of combined packets, the original video 
packets can be successfully decoded. Since the smartphone 
users are considered to be much closer to each other than to 
the cloud server, packet transmissions among the users are 
consequently more energy efficient than over cellular links. 

Experiments show that each phone saves up to 73 per-
cent of its battery relative to video streaming over cellular 
networks only. However, the approach is based on the as-
sumption that all smartphones retrieve the same 2D video 
content. The problem becomes more complex when video 
content differs, when 3D video streaming must be scaled, 
or if the framework requires other advanced transmission 
and networking technologies. In these cases, the cloud 
server’s computational capabilities must accommodate 
complex optimization problems, which might be outside 
the resources of a cloudlet.

COMPRESSIVE SAMPLING
The approaches described so far rely on prediction-
based video encoders. Drawbacks include high encoding 
complexity and choppy video streaming from the variable-
length encoding scheme that prediction-based encoders 
use. The resulting all-or-none behavior creates a synchro-
nization loss in decoding a noise-corrupted packet. This 
tendency is troublesome in wireless applications, which 
can have varying levels of noise.

Compressive sampling offers a possible solution to both 
problems, enabling low-complexity video encoding and 
error-resilient video streaming.13 Our work to develop an 
architecture based on compressive sampling focuses on 
applications in joint multiview video decoding.

Multiview streaming
The main idea in compressive sampling is to efficiently 
acquire and reconstruct signals that are inherently 
sparse or compressible. Theoretically, an algorithm 
based on compressive sampling can reconstruct sparse 
signals with fewer samples than twice the signal’s band 
limit. According to the foundational Shannon-Nyquist 
signal-processing theory, a perfect reconstruction of a 
band-limited signal is possible from a countable sample 
sequence only if the sampling rate is no less than twice 
the signal’s band limit. Compressive sampling success-
fully breaks that limit.

This lower number of required samples means that 
scene capture need not involve all the original pixels; 
thus, encoding reduces to linear operations and most re-
maining complexity shifts to decoding on the cloud server, 
ultimately prolonging the camera’s battery life.13 Figure 4 
depicts the independent encoding of multiview 3D video 
sequences based on compressive sampling, along with 
joint decoding that exploits inter-view correlation, which 
takes place in the cloud server.14

As the figure shows, the camera selects a K-view to 
serve as a reference for the other camera views—that is, 
the compressive sampling views. The camera encodes 
and transmits video frames of these views at a lower 
measurement rate than it uses for the selected K-view. 
To decode these compressed views, the cloud server gen-
erates side-frame information, first downsampling the 
K-view frames to the same lower measurement rate. To 
estimate motion between views, the server compares the 
reconstructed degraded K-view frames to the initially re-
constructed compressed view frame. It then fuses the 
original compressed view measurements with the gener-
ated side image to reconstruct the compressive sampling 
view frame.

Experimental results14 show that, with a measure-
ment rate of 0.2 for the compressive sampling view and 
0.6 for the K-view, joint decoding yields a 0.85 simi-
larity between the original and decoded compressive 
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sampling view (a higher similarity corresponds to better 
reconstruction quality). Independent decoding yields a 
similarity of only 0.75.

Challenges and possible solutions
Although an architecture based on compressive sampling 
has distinct advantages for video capture and encoding 
with simple operations, the video compression efficiency 
is still much lower than traditional encoders, which are 
based on complex motion compensation.

We envision several potential ways to extensively ex-
ploit compressive sampling’s advantages: 

•• Develop more efficient and robust decoding algo-
rithms. Such algorithms can raise video reconstruction 
quality without increasing measurement rate. 

•• Integrate with traditional encoding to balance ef-
ficiency and complexity. An example is to use 
traditional encoders to encode key frames or views, 
while using compressive sampling to encode auxiliary 
frames or compressive sampling views. 

•• Design network-friendly streaming protocols, by 
exploiting the error resilience of compressively sam-
pled video signals. This strategy can help improve 
network-wide energy efficiency, particularly when 
interference or poorly located cell edges degrade 
link quality. 

Researchers have made progress in the first area, pro-
ducing algorithms such as least absolute shrinkage and 
selection operator (LASSO), gradient projection for sparse 
reconstruction (GPSR), and orthogonal matching pursuit 
(OMP). In general, however, researchers must still investi-
gate the net benefits of applying compressive sampling in 
complex scenarios.

A lthough cloud-enabled smart camera networks are 
a promising way to integrate emerging multime-
dia cloud computing techniques and 3D wireless 

video streaming, much work remains. Architectures 
must incorporate energy-efficient task offloading, which 
requires modeling and predicting energy consumption 
for both local and cloud computing. Reducing the cli-
ent-to-cloud delay will enable time-sensitive 3D video 
streaming. Integrating future heterogeneous wireless 
networks with multimedia cloud computing will boost 
emerging multimedia-rich applications. Jointly exploiting 
the advantages of traditional video encoding technol-
ogy and compressive sampling could produce clean-slate 
networking protocols. Finally, integrating solutions will 
enable researchers to assess the overall benefit of cloud-
assisted 3D video networking and better refine it to meet 
a growing user demand. 

As a next step in our work, we plan to develop a cloud-
assisted video streaming testbed, supporting multiple 
concurrent free-viewpoint viewers. The testbed can be 
used to validate newly designed streaming protocols. 
Through cloud-enabled smart camera networks, we envi-
sion that high-quality multiview 3D video streaming will 
be supported without considerably increasing the energy 
consumption of smart cameras. 
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