This paper has been accepted for publication in IEEE/ACM Transactions on Networking 1

WNOS: Enabling Principled Software-Defined
Wireless Networking

Zhangyu Guan, Senior Member, IEEE, Lorenzo Bertizzolo, Student Member, IEEE,
Emrecan Demirors, Member, IEEE, and Tommaso Melodia, Fellow, IEEE

Abstract—This article investigates the basic design principles
for a new Wireless Network Operating System (WNOS), a rad-
ically different approach to software-defined networking (SDN)
for infrastructure-less wireless networks. Departing from well-
understood approaches inspired by OpenFlow, WNOS provides
the network designer with an abstraction hiding (i) the lower-
level details of the wireless protocol stack and (ii) the distributed
nature of the network operations. Based on this abstract repre-
sentation, the WNOS takes network control programs written on
a centralized, high-level view of the network and automatically
generates distributed cross-layer control programs based on dis-
tributed optimization theory that are executed by each individual
node on an abstract representation of the radio hardware.

We first discuss the main architectural principles of WNOS.
Then, we discuss a new approach to automatically generate
solution algorithms for each of the resulting subproblems in an
automated fashion. Finally, we illustrate a prototype implemen-
tation of WNOS on software-defined radio devices and test its
effectiveness by considering specific cross-layer control problems.
Experimental results indicate that, based on the automatically
generated distributed control programs, WNOS achieves 18%,
56% and 80.4% utility gain in networks with low, medium and
high levels of interference; maybe more importantly, we illustrate
how the global network behavior can be controlled by modifying
a few lines of code on a centralized abstraction.

Index Terms—Software-defined Networking, Distributed Opti-
mization, Automated Control Program Generation, Wireless Ad
Hoc Networks.

I. INTRODUCTION

Most existing wireless networks are inherently hardware-
based and rely on closed and inflexible architectures that delay
adoption of new wireless networking technologies. Moreover,
it is very challenging to control large-scale networks of
heterogeneous devices with diverse capabilities and hardware.
Quite the opposite, software-defined radios provide a vast
degree of flexibility. At the same time, software radios today
lack appropriate abstractions to enable prototyping of complex
networking applications able to leverage the cross-layer inter-
actions that characterize wireless operations. To use an analogy
from computer systems, trying to build a complex networked
application on software radios is today as hard as trying to

This work is based upon work supported in part by ONR grants 0014-
16-1-2213 and N0O0014-17-1-2046, ARMY WO9IINF-17-1-0034, and NSF
CNS-1618727. A preliminary, shorted version of this paper was presented
at the ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Los Angeles, USA, June 2018 [1].

Zhangyu Guan is with the Department of Electrical Engineering, University
at Buffalo, Buffalo, NY 14260 USA; Lorenzo Bertizzolo, Emrecan Demirors
and Tommaso Melodia are with the Institute for the Wireless Internet of
Things, Department of Electrical and Computer Engineering, Northeastern
University, Boston, MA 02115 USA (e-mail: guan@buffalo.edu, {bertizzolo,
edemirors, melodia} @ece.neu.edu).

build a complex piece of enterprise software by writing bare-
metal code in a low-level programming language.

There has been no lack of efforts trying to define new
networking abstractions in recent years. The notion of software
defined networking (SDN) has been introduced to simplify net-
work control and to make it easier to introduce and deploy new
applications and services as compared to classical hardware-
dependent approaches [2], [3]. The main ideas are (i) to
separate the data plane from the control plane (an idea that in
different form was already pervasive in the cellular industry);
and more importantly (ii) to “control” the network behavior
through a centralized programmatic network abstraction. This
simplifies the definition of new network control functionalities,
which are now defined based on an abstract and centralized
representation of the network.

So far, most SDN work has concentrated on “softwariza-
tion” of routing for commercial infrastructure-based wired
networks, with some recent work addressing wireless networks
[2], [4], [5], [6]. However, applications of software-defined
networking concepts to infrastructure-less wireless networks
(i.e., tactical ad hoc networks, mesh, sensor networks, D2D,
IoT) are substantially unexplored.' This is not without a
reason. Essentially, distributed control problems in wireless
networks are complex and hard to separate into basic, isolated
functionalities (i.e., layers in traditional networking architec-
tures). Typical control problems in wireless networks involve
making resource allocation decisions at multiple layers of
the network protocol stack that are inherently and tightly
coupled because of the shared wireless radio transmission
medium; conversely, in software-defined commercial wired
networks one can concentrate on routing at the network layer
in isolation. Moreover, in most current instantiations of this
idea, SDN is realized by (i) removing control decisions from
the hardware, e.g., switches, (ii) by enabling hardware (e.g.,
switches, routers) to be remotely programmed through an open
and standardized interface, e.g., OpenFlow [2], and (iii) by
relying on a centralized network controller to define the be-
havior and operation of the network forwarding infrastructure.
This unavoidably requires a high-speed backhaul infrastructure
to connect the edge nodes with the centralized network con-
troller, which is typically not available in wireless networks
where network nodes need to make distributed, optimal, cross-
layer control decisions at all layers to maximize the network
performance while keeping the network scalable, reliable, and
easy to deploy [7]. Clearly, these problems, which are specific
to wireless, cannot be solved with existing SDN approaches.

New Approach to Wireless SDN. For these reasons, in this

'We will discuss a few exceptions in Section VIII: Related Work.

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 2

Network Control Objective
Defined Using WiNAR

[Network Abstraction Framework: WiNAR]

Centralized Network Control Problem

|

[Automated Network Control Problem Decomposition]

Optimization Solution Algorithm Generation
I Algorithm Code

|

¢
{
! Programmable

Programmable 8
Protocol Stack (PPS)

8
Protocol Stack (PPS)

Sl Centralized Network [Centralized Network |}
Control Problem 1 Control Problem 2
Global
CoNtrol === == mmm e — oo
Abstracted
Network
Wireless Network Operating System
Wireless .L,-\ N

Networks

Application Layer

Transport Layer
Network Layer
Link Layer

Physical Layer

' 't CPU/FPGA

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Decision Plane
(Distributed Algorithms)

CPU/FPGA

i

i

\\{ RF Front-end

RF Front-end 1

(((éadio

(((%adio

Fig. 1: Architecture of the wireless network operating system.

paper we propose and explore a new approach to software-
defined networking for wireless networks. At the core, we
attempt to answer the following question: is it possible to
automatically generate distributed wireless network control
programs that are defined based on a centralized abstraction of
the network that hides low-level implementation details; and in
this way bridge the gap between software defined networking
and distributed network optimization/control? Can we, in this
way, keep the benefits of distributed network control (where
decisions are taken close to the network/channel/interference
state without the need for collecting information at a cen-
tralized decision making point); and at the same time be
able to define the network behavior based on a centralized
abstraction? Can we, by answering these questions, develop a
principled approach to software-defined wireless networking
based on cross-layer optimization theory? We attempt to
provide a preliminary answer to these compelling questions
by studying the core building principles of a Wireless Network
Operating System (WNOS). Similar to a computer operating
system, which provides the programmer with an abstraction
of the underlying machine that hides the lower level hardware
operations (e.g., its parallel nature in multi-core systems)
and exposes only critical functionalities, WNOS provides the
network designer with an abstraction hiding the lower-level
details of the network operations. Maybe more importantly,
WNOS hides the details of the distributed implementation
of the network control operations, and provides the network
designer with a centralized view abstracting the network func-
tionalities at a high level. Based on this abstract representation,
WNOS takes centralized network control programs written on
a centralized, high-level view of the network and automatically
generates distributed cross-layer control programs based on
distributed optimization theory that are executed by each
individual node on an abstract representation of the radio
hardware. This paper takes a decisive step in this direction
and claims the following contributions:

o WNOS Architecture Design. We propose an architecture
for WNOS by defining three key components: network
abstraction, automated network control problem decom-
position, and programmable protocol stack.

e Network Abstraction. We propose a new wireless network
abstraction framework WiNAR - inspired by the language
of network utility maximization (NUM), based on which
network designers can characterize diverse desired net-
work behaviors before actual deployment.

e Automated Decomposition. We propose the notion of
disciplined instantiation, based on which user-defined
abstract centralized network control problems can be
decomposed into a set of distributed subproblems in an
automated fashion. Distributed control programs regulate
the behavior of each involved node at network run time to
obtain the desired centralized behavior in the presence of
time-varying local conditions (including channel, traffic,
etc.).

o WNOS Prototyping and Testbed Evaluation. We outline
the design of a WNOS prototype that implements the pro-
posed network abstraction and automated decomposition
and solution algorithm generation approach, as well as a
newly designed general purpose programmable protocol
stack (PPS) that covers all protocol layers. Based on
the PPS, a multi-hop wireless ad hoc network testbed
is developed using software-defined radios to provide a
proof of concept of the WNOS.

Unlike traditional SDN, which relies on centralized or
logically centralized control (unsuitable for infrastructure-less
wireless networks) and manual design of network control
programs, we propose to define control behaviors on a cen-
tralized network abstraction, while executing the behaviors
through automatically generated distributed control programs
based on local network state information only. Hence, the
user-defined centralized cross-layer network control objective
can be achieved with no need to distribute network state at
all layers of the protocol stack across the global network,
which is obviously undesirable. We envision that the re-
sulting WNOS will contribute to bridging the gap between
centralized/distributed optimization techniques and software-
defined networking - distributed control is not based on design-
by-intuition principles, but on rigorous mathematical models
based on nonlinear optimization theory.

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 3

The remainder of the paper is organized as follows. In
Section II, we present the design architecture of WNOS, and
then describe the network abstraction framework WiNAR in
Section III. We discuss the automated network control problem
decomposition approach in Section IV, and present the proto-
typing and experimental evaluation of WNOS in Sections V
and VI, respectively. We discuss limitations and future work in
Section VII and review related work in Section VIII. Finally,
we draw the main conclusions in Section IX.

II. WNOS ARCHITECTURE

The architecture of the proposed wireless network operating
system (WNOS) is illustrated in Fig. 1. At a high level, the
WNOS comprises three key components: network abstraction,
network control problem decomposition, and programmable
protocol stack (PPS).

Network Abstraction. This is the interface through which
the network designer can define the network control problem
to achieve certain application-specific objectives. Two core
functionalities are provided by this component, that is, network
behavior characterization and centralized network control
problem definition. WNOS provides the designer with a rich
set of network abstraction APIs through which the designer
can characterize at a high-level the desired network behavior.
Through the API, the designer can define various network
control objectives, such as throughput maximization, energy
efficiency maximization, delay minimization, or their combi-
nations; can impose different constraints on the underlying
physical network, such as the maximum transmission power
of each node, available spectrum bandwidth, maximum end-
to-end delay, among others. Importantly, to define a network
control problem, the designer does not have to consider all
implementation details of the networking protocol stack. That
is, the designer can select different templates of network
protocols, which are programmable with parameters that can
be optimized in real time, such as deterministic scheduling vs
stochastic scheduling, proactive routing vs reactive routing vs
hybrid routing, delay-based vs packet-loss-based congestion
control, among others.

It is worth pointing out that the network designer does not
need to control protocol parameters manually. Instead, the
parameters are optimized by WNOS through automatically
generated distributed algorithms. These control objectives,
network constraints, and selected protocol templates together
serve as the input of the network control problem definition.
Then, given a network control problem defined at a high-level,
a mathematical representation of the underlying centralized
network utility maximization problem is constructed by pars-
ing the network abstraction functions. Details of the network
abstraction design will be discussed in Section III.

Network Control Problem Decomposition. The resulting
centralized network control problem, which characterizes the
behavior of the wireless network, is then decomposed into a
set of distributed sub-problems, each characterizing the local
behavior, e.g., a single session (a flow from one node to
another) or a single node. To this end, WNOS first deter-
mines a decomposition approach based on the mathematical
structure of the network control problem, including whether

the problem involves one or multiple sessions, what protocol
layers are to be optimized, if the problem is convex or not,
among others. Different decomposition approaches can lead to
different structures of the resulting distributed control program
with various convergence properties, communication overhead,
and achievable network performance [8], [9], [10], [11].

Through vertical decomposition, a centralized network con-
trol problem can be decomposed into subproblems each in-
volving a single or subset of protocol layers, while through
horizontal decomposition each of the resulting subproblems
involves local functionalities of a single session or node
device. Different decomposition approaches can be jointly
and iteratively applied if the centralized network control
problem involves multiple concurrent sessions and cross-layer
optimization of multiple protocol layers. For each of the
resulting subproblems, a numerical solution algorithm (e.g.,
interior-point method) is then selected to solve the problem.
Different distributed solution algorithms interact with each
other dynamically based on local network information at
network run time, by updating and passing a common set
of optimization variables. It is worth mentioning that WNOS
needs to regenerate the distributed solution algorithms only
when the network control objective changes. See Section IV-B
for details of the decomposition approach.

Programmable Protocol Stack (PPS). For each of the
resulting distributed network control problems, a numerical
solution algorithm is selected to solve the optimization prob-
lem. The obtained optimization results are used to configure
the control parameters of a PPS on each local network device
to adapt to the dynamic networking environments in real
time. The PPS provides abstractions and building blocks
necessary to prototype complex cross-layer protocols based
on a high level, abstract representation of the software radio
platform without hiding, and instead while retaining control
of, implementation details at all layers of the protocol stack
and while maintaining platform independence [12], [13]. The
control interface between the PPS and the distributed solution
algorithms is defined so that (i) the solution algorithm can
retrieve network status information from the register plane of
the PPS, such as noise and interference power level, queue
status, available spectrum band, among others, and then use
the retrieved information as input parameters of the distributed
optimization problems; and (ii) based on the optimized solu-
tions, the programmable protocol stack is able to configure
in an on-line fashion the parameters of the adopted protocol
stack via its decision engine in the decision plane, e.g., update
the modulation scheme based on the optimized transmission
power hence SINR, configure the TCP window size based on
the optimized application-layer rate injected into the network.

III. NETWORK ABSTRACTION: WINAR

The objective of the network abstraction component
WiINAR is to provide network designers with an interface to
characterize network behaviors at a high and centralized level.
This goal is however not easy to accomplish because of the
following main challenges:

o Pre-deployment network abstraction. Unlike traditional

network abstraction and resource virtualization [14],

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 4

where the objective is to abstract or virtualize networks
at one or two protocol layers at run time with fixed
network topology and known global network information,
in our case run-time information is not available in the
design phase. For example, the available links that can
be used by a session, the neighbors of a node (i.e., those
devices that can hear from the node), the interferers of
a node, among others are not known a-priori. Therefore,
the challenge is to abstract the wireless network before
actual deployment by taking run-time uncertainties at all
protocol layers into consideration, including time-varying
wireless channels, interference coupling among nodes,
network topology and traffic load variations, among oth-
ers.

e Multi-role network element. A physical network entity
may serve in different roles in the network. For example,
a node can be the source or destination of a session, the
transmitter, relay or receiver of a link, the neighbor of
other nodes, a head of a cluster, a member of the whole
network, among others. The network abstraction needs to
allow designers to characterize network element behav-
iors with respect to heterogeneous roles while controlling
the same physical network entity.

To address these challenges, elements in WNOS are repre-
sented following a three-fold abstraction. At the core of the
network abstraction there is a network representation layer,
which bridges the outer network control interface layer and
inner network modeling layer. Through the network control
interface layer, the designer defines the network control ob-
jective at a high level, and a mathematical representation
of the defined centralized network control problem is then
constructed based on the network modeling layer.

Network Representation. The network abstraction repre-
sents different network entities as two categories of network
elements, i.e., Primitive Element and Virtual Element, defined
as follows.

Definition 1 (Primitive Element): A primitive element is
a network element that represents an individual determined
network entity. Two criteria need to be satisfied for each
primitive element A:

o |{Network entities represented by A}| = 1 with | - |
being the cardinality of a set, i.e., there exists a one-to-one
mapping between any primitive element and a physical
network entity.

o For any time instants t; # t2, A(t;) = A(t2) always
holds, i.e., the one-to-one mapping does not change with
time.

Examples of primitive elements include Node, Link,
Session, Link Capacity and Session Rate, among others.2

Definition 2 (Virtual Element): A virtual element represents
an undetermined set of network entities, i.e., cannot be mapped
to a deterministic set of primitive elements other than at
runtime A virtual element V satisfies

o |{Network entities represented by V}| > 1, i.e., each
virtual element is mapped to physical network entities

2Here, Link Capacity and Session Rate refer to the network parame-
ters rather than any specific values of the parameters that can be time varying.

in a one-to-many manner.

o« V = V(t), ie., the set of network entities represented
by each virtual element is a function of the network run
time ¢.

Examples of virtual element include Neighbors of Node
(the set of neighbors of a node), Links of Session (the set
of links used by a session), Sessions of Link (the set of
sessions sharing the same link), among others. The members
of a virtual element are primitive elements, e.g., each member
of virtual element Links of Session is a primitive element
Link.

Then, a wireless network can be characterized using a
set of primitive and virtual network elements as well as the
cross-dependency among the elements, which is formalized in
Definition 3.

Definition 3 (Network): With primitive elements A,,, A/
and virtual elements V,, V), , a network Net can be repre-
sented as

Net = { A, Vo, I(A, A), IV, Viur), I(A, Vi)

m,m' € Ma,m#m',n,n" € Ny,n#n'} (1)

where M, and Ny are the sets of primitive
and virtual network elements, respectively, and
(A, A), IVn, Vi), I(A, Vi) represent the inter-

dependencies between primitive elements A, and A,
between virtual elements V,, and V), between primitive
element A,, and virtual element V,,, respectively.

In Definition 3, the inter-dependency I(-,-) among different
network elements can be characterized as a directed multi-
graph [15]. Each vertex of the graph represents a network
element, and the relationship between two coupled vertices are
characterized using one or multiple directed edges connecting
the two vertices. All directed edges together characterize the
cross-dependency relationship among the network elements.
For example, primitive element Link is the holder of an-
other primitive element Capacity (i.e., Link has attribute
Capacity). Similarly, Link is an attribute of primitive element
Node and is a member of virtual element Links of Session.
The mutual relationship between primitive element Node and
virtual element Neighbors of Node are characterized using
two directed edges (hence a multigraph [15]): Node has an
attribute Neighbors of Node, each member of which is a
Node.

e Has Attribute characterizes parent-child relationships be-
tween network elements, e.g., parent element Link
has child elements Link Capacity (Inkcap) and
Link Power (Inkpwr) as its attributes.

o Each Member is characterizes set-individual relationships
between virtual and primitive elements, e.g., each mem-
ber of Links of Session (Inkses) is a Link (Ink).

o Is Function of defines the mathematical model of an ele-
ment based on other elements, e.g., element Link SINR
(Inksinr) is a function of Link Power (Inkpwr).

Network Control Interfaces. Based on the network ele-

ment representation, network control interfaces can then be
designed. Based on these, network designers are allowed to
characterize network behaviors. Four categories of operations
have been defined:

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 5

e Read: Extract network information from a single or a
group of network elements, e.g., extract the set of links
used by a session from the attributes of Node.

o Set: Configure parameters for a single or a group of
network elements, e.g., set Mazimum Power (i.e.,
maxpwr), which is also an attribute of element Node.

e Compose: Construct a new expression by mathemati-
cally manipulating network parameters obtained through
Read operations. For example, add together the power
of all links originated from the same node, i.e., sum
Link Power (Inkpwr) over Links of Node (Inknd).

o Compare: Define network constraints by comparing two
expressions obtained using Compose operations.

Centralized Network Control Problem. Finally, central-

ized network control problems can be defined based on the
network control interfaces. A network control problem com-
prises of four components: network setting, control variables,
network utility and network constraints.

o Network Setting can be configured by setting network pa-
rameters using Set operations and extracted from network
elements using Read operations. Configurable network
parameters include network architecture (single- or multi-
hop, flat or clustered topology), spectrum access prefer-
ences (scheduled or statistical access), routing preferences
(single- or multi-path routing), among others.

o Control Variables can be defined by setting (i.e., Set op-
eration) network parameters as optimization variables, in-
cluding transmission power, frequency bandwidth, trans-
mission time, source rate, channel access probability,
among others.

o Network Utility can be defined by binding (i.e., Compose
operation) one or multiple expressions with mathematical
operations like 4+, —, X, < and mathematical functions
like log, /(-) and their combinations.

e Network Constraints can be defined by comparing two
expressions using Compare operations.

Examples of network control problem definition based on the
developed abstraction APIs will be given in Section VI.

Given the high-level characterization of network behaviors,
the underlying mathematical models of the problem can then
be constructed by extracting the mathematical models of each
network element using the Read operation. The resulting
network utility maximization problem is a centralized cross-
layer network optimization problem. Our goal is to generate, in
an automated fashion, distributed control programs that can be
executed at individual network devices, which is accomplished
by another main component of WNOS, i.e., Network Control
Problem Decomposition as described in Section IV.

IV. AUTOMATED NETWORK CONTROL PROBLEM
DECOMPOSITION

So far, there is no existing unified decomposition theory
that can be used to decompose arbitrary network control
problems. Depending on whether we need to decompose
coupled network constraints, or coupled radio resource vari-
ables; and depending on the decomposition order, a cross-layer
network control problem can be theoretically decomposed
based on dual decomposition, primal decomposition, indirect

decomposition and their combinations. Please refer to [8], [9]
and references therein for a tutorial and survey of existing
decomposition theories and their applications. In this paper,
as one of our major contributions, we propose an automated
network control problem decomposition approach based on
decomposition of nonlinear optimization problems.

The core objective of the decomposition is two-fold:

o Cross-layer Decomposition: Decouple the coupling
among multiple protocol layers, resulting in subproblems
each involving functionalities handled at a single protocol
layer;

o Distributed Control Decomposition: Decouple the cou-
pling in radio resource allocation among different net-
work devices, resulting in subproblems that can be solved
at each device in a distributed fashion.

Next, we first provide a brief review of cross-layer distributed
decomposition theory based on which our automated decom-
position approach is designed.

A. Decomposition Approaches

In this paper we consider duality theory for cross-layer
decomposition (while the automated decomposition approach
in Section IV-B is not limited to any specific decomposition
theory). Consider a network control problem expressed as

maximize Y fi(z;),
z i€T 2
subject to: > gi(x;) <¢j, Vjie T
€T,

with & = (x;);ez being the control vector. The dual function
can be constructed by incorporating the constraints into utility
in (2) by introducing Lagrangian variables A = (\;)jec7,

maximize L(m,)\) = Z fb(acl)—z)\j Cj — Z gb(xl) (3)
i€T JET i€T;

where L(x, A) is called the Lagrangian of problem (2) [16].

Then, the original problem (2) can be solved in the dual

domain by minimizing (3), i.e., minimizing the maximum of

the Lagrangian. This can be accomplished by decomposing

(3) into subproblems

foub_1 = maxcinmize Zfz(asz) + Z Aj Z gi(zs) |, @&
i€ FISvA €T

fsub2 = mlm}{nlze fsub1 — JGZJ Ajcy, (5)

and then iteratively maximizing fs,n_1 over control variables

x with given A and updating A with the minimizer of fip_o.

The outcome of cross-layer decomposition is a set of
network control subproblems each corresponding to a single
protocol layer, e.g., capacity maximization at the physical
layer, delay minimization through routing at the network layer,
among others. The objective of distributed decomposition
is to further decompose each of the resulting single-layer
subproblems into a set of local network control problems that
can be solved distributively at each single network entity based
on local network information.

In the existing literature, this goal has been accomplished
by designing distributed network control algorithms manually
for specific network scenarios and control objectives [17],
[7], which however requires deep expertise in distributed

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 6

optimization. Next, we present a theoretical framework based
on which distributed control programs can be designed for
arbitrary user-defined network control problems.

The core design principle is to decompose a coupled
multi-agent network control problem into a set of single-
agent subproblems, where each agent optimizes a penalized
version of their own utility. Consider a multi-agent network
control problem with the objective of maximizing U(x) =
> U;(xi,%x—;), where U; is the utility function of agent i € Z,
;e I: (x;,%x_;) with x; and x_; representing the strategy of
agent 7 and the strategy all other agents in Z/i. Then, the
key of distributed decomposition is to construct a penalized
individual utility U;(x;,x_;) for each agent i € Z, expressed
as U;(x;,x—;) = 0;(U(x)) + I;(x), where ©;(U(x)) is the
individual item of U (x) associated to agent ¢ € Z, I';(x) is the
penalization item for agent ¢. Below are three special cases of
U,;(x;,x_;) while both individual and penalization items can
be customized by network designers to achieve a trade-off
between communication overhead and social optimality of the
resulting distributed control programs.

o Case 1: QZ(U(X)) = fi(Xi,X,i), Fi(Xi,X,i) = 0,

i.e., best response without penalization. In this case,
the agents optimize their own original utility U (x;,x_;)
by computing the best response to the strategies of all
other competing agents (i.e., x_;) with zero signaling
exchanges.

o Case 2: 0;(U(x)) = Vi, Ui(x°)(x; — x?), I}(x) =

> Vi Uj(x%) (x; — x¥), with x? and x° being the
€T /i
?:urr/ent strategy of agent ¢ and of all agents. This will
result in distributed gradient algorithm [18], where partial
cooperation is allowed among the agents by exchanging
appropriate signaling messages.

e Case 3 0,(U(x)) = Ui(x;,x%,), Li(xi,x—) =

> Vi, fj(xY), which leads to decomposition by partial

j€Z /i

fine/arization (DPL), a newly established decomposition

result [9].
It is worth pointing out that, the main contribution of this
paper is not to propose a specific new decomposition theory.
Instead, our objective is to accomplish network control prob-
lem decomposition based on existing theories in an automated
fashion [8], [19], [20], [21]. Next, we describe how this can
be accomplished by taking cross-layer decomposition as an
example in Section I'V-B.
B. Automated Decomposition

A key step in cross-layer decomposition, as discussed in
Section IV-A, is to form a dual function for the original user-
defined network control problem by absorbing constraints into
the utility. Here, an underlying assumption is that the original
problem (2) must have a determined set of constraints, i.e.,
sets Z, J and [J;,Vi € Z in (2) must be known. This poses
significant challenges to automated network control problem
decomposition at design phase, because the sets associated to
the network elements are not determined other than at run
time, i.e., they are virtual elements as defined in Section III.

Take virtual element nbrnd as an example, i.e., the set of
Neighbors of Node. The neighbors of a node may change

_Instance of
Virtual Element

Virtual ...
Element™Vy=

&

P(V): Network control
problem to be instantiated

e /
lnst(vzi\x\‘//

P(inst(V)):
Instance of P(V)

P, ,(inst(V,,,)): Subproblem Apply decomposition results at
obtained by decomposing network run time

P(inst(V)
Fig. 2: Basic principle of network control problem decomposition
based on disciplined instantiation (DI).

from time to time because of movement of nodes, joining of
new nodes or leaving of dead nodes. Similarly, the set of links
along an end-to-end path, the set of sessions sharing the same
link and the set of all active links in the network, among others,
are also time varying with no predetermined sets. That is to
say, a network control problem defined at a high and abstract
level may result in many instances of problems with different
sets in the constraints and hence different dual variables \; in
the resulting dual function (3). Therefore, a centralized user-
defined network control problem cannot be decomposed by
decomposing an arbitrary specific instance of the problem.

As a core contribution of this work, next we present a new
methodology to enable network control problem decomposi-
tion in an automated fashion at design phase with no need
to know run time network information. At the core, we ask
the following question: For a user-defined centralized abstract
network control problem, are there any special set of instances
of the problem such that decomposing any problems in the
special set decomposes all possible instances? If yes, what
is the right approach to obtain such problem instances? We
answer these questions by proposing the notion of disciplined
instantiation (DI).

Disciplined Instantiation. In a nutshell, the DI technique
generates at design time, following a set of predefined rules
(as discussed below), a special instance of the user-defined
abstract network control problem, such that the abstract prob-
lem can be decomposed by decomposing the special instance
and the obtained decomposition results can be applied to
different arbitrary instances of the control problem at network
run time. Notice that DI does not guarantee optimality of the
generated distributed algorithms. Instead, the objective of DI is
to automate the decomposition of user defined network control
problems based on given decomposition rules.

In Fig. 2 we illustrate the basic principle of the DI-based
decomposition approach by considering a network control
problem that involves three virtual elements vy, vo and vs,
which, e.g., can be Neighbors of Node for nodes 1, 2 and
3, respectively. Let inst(v;) represent the instance of virtual
element v;, denote V = {v1,vq,v3} as the set of all the three
virtual elements and further denote the set of instances for all
v; € V as inst(V). Then, the objective of DI is to create a
unique instance for each virtual element v; € V such that there
exists a one-to-one mapping between V and inst(V).

Denote P(V) as the network control problem to be in-
stantiated, and let P(inst(V)) represent the specific in-
stantiated problem obtained by instantiating P (V). Then,

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 7

P(inst(V)) can be decomposed into a set of subproblems
Pub (inst(Vsup)) each involving only a subset Vg, of the
virtual elements with Vg,;, C V. For example, in Fig. 2,
P (inst(V)) has been decomposed into four subproblems, with
the first subproblem involving only virtual element v, the
second involving only w9, the third involving only vs while
the fourth involves all three virtual elements. Because of the
one-to-one mapping between each virtual network element v;
and its instance inst(v;), the decomposition results obtained
by decomposing P (inst())) are also applicable to the original
problem P(V) represented in virtual elements and hence its
various specific instances at network run time.

In the above procedure, the key is to guarantee one-to-
one mapping between each virtual element v; and its instance
inst(v;). This cannot be achieved by generating arbitrarily
disjoint instances for different virtual elements v; because
active network elements assume multiple roles as described in
Section III. For example, a physical link needs to be involved
in the instances of virtual element “Links of Session” for
all the sessions sharing the link. In the following, we first
describe the two rules following which instances are generated
in WNOS, i.e., equal cardinality and ordered uniqueness, and
then discuss why the two rules are needed for DI. Before this,
we first identify two categories of virtual elements, i.e., global
and local virtual elements. Please refer to Section III for the
definition of virtual element.

o A global virtual element is a virtual element whose set of
physical network entities have the same entity type (e.g.,
node, or link) and spans over the entire network, e.g.,
element netnd represents Nodes in Network, the set of
all users Z in (2)-(4).

o Differently, a local virtual element comprises a sub-
set of physical network entities of the network, and
hence is a subset of the corresponding global virtual
element. For example, local virtual element nbrnd (i.e.,
Neighbors of Node) is a subset of global virtual
element Nodes in Network; as another example, in (2)-
(4), since J; is a subset of 7, i.e., J; C J, J; is a local
virtual element while 7 is a global virtual element.

Rule 1: Equal Cardinality. This rule requires that all the
instances for the same type of local virtual elements, e.g.,
Neighbors of Node, must have the same cardinality, i.e.,
the same number of members. Instances that satisfy this
requirement are called peer instances.

In WNOS, this is achieved by peer random sampling,
a technique that can be used to generate peer instances.
Specifically, given a user-defined network control problem,
the global virtual element denoted as v8'” is first instantiated
using a set of pre-determined number N&® of elements, i.e.,
linst(v8”)| = N8 with inst(v8'") being the instance of
the global virtual element v&'"® and |inst(v&'P)| being the
cardinality of inst(v8'?). The resulting instance inst(ve'®)
will be used to serve as the mother set to generate instances
for those local virtual elements v'°!.

Then, each local virtual element v'°! can be instantiated by
randomly selecting a subset of members from the mother set
inst(vglb), i.e., the instance of the global virtual element v8lb,
Denote the resulting subset instance as inst(v'°!), then we

have |inst(v')| = N' and inst(v'?!) C inst(v&®), where
Nl is the cardinality of instances for local virtual elements.
Specific examples will be discussed in Sections IV-C and VI-A
for generating instances based on this rule.

Rule 2: Ordered Uniqueness. With this rule, a unique
instance will be generated for each local virtual element v'°!.
This means that no two subsets generated by peer random
sampling will be identical.

In WNOS, this is accomplished by hash checking, as in (6):

inst(v") Y inst/ () " hid,©)

where the members of inst(v'!), i.e., the instance for local
virtual element v'°!, are first sorted, and then a unique id
hid! is calculated for the sorted instance inst’(v'°') using
a hash function A(-). A hash function is a function that can be
used to map an arbitrary-size data (instances in our case) to a
fixed-size id [22]. In WNOS, hash function is used to enable
fast uniqueness checking by generating an id for each of the
generated instances.

Rationale for The Rules. The above two rules together
guarantee that there exist a one-to-one mapping between the
local virtual elements and their instances. As discussed above,
this is the key to guarantee that the decomposition results
obtained based on DI are also applicable at network run
time. To show how the one-to-one mapping can be achieved
following the two rules, we take Fig. 3 as an example where
A, B, C and D represent four specific instances of local virtual
element v'°!, with each member in the set representing a
primitive element (see Section III for the definition), e.g., an
individual node. Denote A’, B’, C’' and D’ as the sets resulting
from sorting the members of A, B, C and D, respectively.

It can be seen that set A is mapped to a three-digit id 100
while B is mapped to 111. Instance C is also mapped to 100
since its sorted instance C’ is identical to A’. Note that in
Fig. 2, in each instantiated sub-problem Py, (inst(Vsup)) the
members of each instance may be re-ordered by the mathe-
matical manipulations decomposing the instantiated network
control problem P(inst())), e.g., forming and decomposing
the dual function in (3), (4) and (5). In (6) function sort(-)
guarantees that the same instances are always mapped to the
same id regardless of the order of its members; otherwise,
instance C will be mapped to a different id 000 as the red
dashed arrow indicates in Fig. 3.

Moreover, in Fig. 3 instance D is mapped to an id different
from that of A and C. This implies that an instance A
and its subset instance D cannot be used at the same time
for disciplined instantiation (DI); otherwise, it will be hard
to separate them if they appear in the same instantiated
network control sub-problems Py, (inst(Vsup)). In DI, this
is prevented by keeping all local instances peer, i.e., it holds

Instance sort(.)
A:{1,3,57,10} ————— A
B:{2,4,8,1,3}

Fig. 3: Ilustration of hash mapping.

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 8

true for all local virtual elements that no instance is a proper
subset of any other instances. If hash checking finds that a
new instance for local virtual element v'°! is identical to any
existing instances, i.e., they have the same id, another instance
will be created v'°' by peer random sampling.

Following the above two rules, a unique specific instance
can be obtained for each of the virtual local elements, while
there exists a one-to-one mapping relationship between the
local virtual elements and their instances. Thus, decomposing
the original network control problem can be equivalently
achieved by decomposing the corresponding specific instan-
tiated problem, which is machine understandable and can be
automatically conducted.

Finally, with instantiated network elements in V), the dual
function (3) of the network control problem P()’) can be ob-
tained and then decomposed as described in Section IV-A. To
enable automated decomposition, the resulting dual function
is represented using a tree. The whole dual function P is
represented using the root node, which can be represented
as the sum of a leaf node and an intermediate node, which
can be further represented in a similar way. In this way,
the decomposition of a network control problem (the dual
function if dual decomposition is used) can be conducted in
an automated fashion by traveling through all leaf nodes of
the tree. The output of automated decomposition is a set of
distributed subproblems each involving a single protocol layer
and single network node. For each subproblem, a solution
algorithm will be automatically generated and the resulting
optimized network protocol parameters will be used to con-
trol the programmable protocol stack (PPS), which will be
discussed in Section V: WNOS Prototyping.

C. Toy Example of DI-based Decomposition
Consider the following cross-layer network control problem:

maximize > Rs

€S)
subject to: >, R, < Cy(II), Vi€ L

SES;

where the objective is to maximize the sum of rate R of all
flows s € S at the transport layer; subject to the constraints
that, for each link [€ L, the aggregate rate of all the flows in
&1, i.e., the set of links sharing link [, cannot exceed the capac-
ity of the link Cj(II) achievable with transmission strategies
IT at the physical layer; by jointly controlling R, and II. Next,
we show how the problem can be decomposed into two single-
layer control problem through DI-based decomposition, while
more examples of the DI-based decomposition that consider
different network problems will be discussed in Section VI.
As defined in Section IV-B, S (i.e., the set of all flows) and
L (i.e., the set of all links) are global virtual elements while
S; C S is a local virtual element. In favor of easy illustration,
consider cardinality N&® = 3 for global virtual elements S
and £ and N'' = 2 for local virtual elements S;, VI € L.
Then, the global virtual elements S and £ can be instantiated
as S = {1,2,3} (i.e., the network has in total three flows)
and £ = {1,2,3} (i.e., the network has in total three links).
The instance of S will then be used as the mother set for
instantiating local virtual elements S;, VI € L, as follows.

Transport Layer : {

First, according to rule 1, i.e., equal cardinality, all S; must
have the same number of members. According to rule 2, no
two or more S; will be the same in the sense of ordered
uniqueness. If local virtual element Sy, i.e., the set of sessions
sharing link [, is instantiated to {1,2} and {2,1} for links
Il =1 and | = 2, respectively, the resulting two instances will
have the same set of ordered members, which violates rule 2
and hence are not allowed in DI. An example instantiation that
meets the two rules, which can be generated by a combination
of peer randomly sampling and hash checking as discussed
earlier in this section, is & = {1,2}, S = {1,3} and
S3 = {2,3}. Let L, represent the set of links used by flow
s. Then, according to the instances for &;, the instances for
Ly C L can be given as £1 = {1,2}, Lo = {1,3} and
L3 ={2,3}. As a result, problem (7) can be instantiated as

maximize Ri1+ R+ Rs
subject to: Ri + Re < C1(IT) @)
Ri + Rz < Co(IT) -

R + R3 < C3(II)

Consider dual decomposition as discussed in Section IV-A,
then the dual function of (8) can be written as

maximize R1 + Rs + R3 + M1 [01 (H) — Ry — RQ]
+ A2 [02 (H) — Ry — R3] + A3 [CS(H) — Ry — Rg,]7 ()]

where A1, A2 and A3 are dual coefficients. By decomposing
(9), problem (8) can be decomposed into two single-layer
problems:

maximize R4 — A\ R1 — AaRq, fors =1
maximize R2 — A1 R2 — A3 Rz, for s = 2 (10)
maximize R3 — A2 R3 — A3 Rs, for s =3

Physical Layer : maximize A1 C1(II) + A2C2(II) + A3C5(II)(11)

where, at the transport layer, each flow s € {1,2,3} maxi-
mizes its own utility by adjusting its transmission rate 2, with
given dual coefficients; while the physical-layer subproblem
maximizes a weighted-sum-capacity by adapting the transmis-
sion strategies II, i.e., the transmission power of individual
nodes.

Now we show how the the decomposition results can be
applied at network run time by taking the transport-layer
subproblem for s = 1 as an example while the same principles
can also be applied to other subproblems. For s = 1, the utility
of the subproblem can be rewritten as R; — (A + Ao)Rj.
Then, to determine the dual coefficients of R; at run time, we
only need to identity the local virtual element corresponding
to instance {\1, A2}, which is virtual element £; according to
the instantiation results of £,. This means that, at run time,
the dual coefficients for flow s should be collected, e.g., at the
source node of flow s, from those links used by the flow.

V. WNOS PROTOTYPING

So far, we have described the basic design principles of
network abstraction and automated network control problem
decomposition. To validate the proposed new ideas, we pro-
totyped WNOS over a testbed with software defined radios.
This is however not easy because of several challenges: (i) with
WNOS, one should be able to deploy a large scale network
by creating only a single piece of code to define the network
control objective in a centralized manner. Since different SDR
front-ends are controlled by different hosts, it is challenging to
distribute and synchronize the generated code among the hosts;
and (ii) there is no existing programmable protocol stack (PPS)

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 9

that supports cross-layer control with optimizable protocol
parameters at each layer. To address these challenges, next
we first discuss the prototyping approach and then describe
the newly designed PPS.

A. Prototyping Approach

A proof of concept of WNOS has been deployed over
a network with 21 USRP software radios. The prototyping
diagram is illustrated in Fig. 4, which follows a hierarchical
architecture with three tiers, i.e., WNOS control host, SDR
control host and SDR front-end.

At the top tier of the hierarchical architecture is the WNOS
control host, based on which one can specify the network
control objective using the provided network abstract frame-
work WiNAR. The output of this tier is a set of automatically
generated distributed solution algorithms, which will be sent
to each of the SDR control hosts. At the second tier, the
programmable protocol stack (PPS) is installed on each of
the SDR control hosts. The distributed optimization algorithms
received from the WNOS control host are stored at the decision
plane of the PPS. At run time, the PPS will be compiled to
generate operational code to control the SDR front-ends of
the third tier. Finally, each of the SDR front-ends (i.e., USRP)
receives the baseband samples from its control host via Gigabit
Ethernet (GigE) interface and then sends them over the air with
transmission parameters dynamically specified in the control
commands from the SDR control hosts.

The primary benefit of prototyping WNOS based on an
hierarchical architecture is to enable scalable network deploy-
ment. Specifically, the tier-1 WNOS control host is connected
to all tier-2 SDR control hosts via wireless interfaces (which
is Wi-Fi in current prototype), through which the generated
distributed algorithms can be automatically pushed to and
installed at each of the SDR control hosts. Hence, one needs
to create a single piece of code only in order to control all the
21 USRPs.

On the WNOS control host, which is a Dell OPTIPLEX
9020 desktop running Ubuntu 16.04, four key WNOS func-
tions have been implemented using a combination of Python
3.0 and CogApp 2.5.1, including the wireless network ab-
straction framework WiNAR, disciplined instantiation, auto-
mated decomposition as well as automated numerical solution
algorithm generation (refer to Sections III and IV for the

Tier 2

SDR Control Host 1
Hardware: Dell Alienware
Software: Ubuntu 16.04

Python 3.0
GNU Radio

Protocol Stack (PPS)

Tier 3

WNOS Control Host

Hardware: Dell OPTIPLEX 9020
Software: Ubuntu 16.04
Python 3.0

CogApp2.5.1

SDR: USRP 1
Software:
FPGA Firmware
(UHD Image)

Baseband
Samples
Algorithms) Transport (TCP) o

T ﬁarma/

Wireless
Interface

j\i:‘
N
b
)
\“
‘
\

Decision Plane Apolication
WNOS Functions r(\Dls_tr[but_ed =] PP

‘ Network Abstraction: WiNAR
i

Network (Routing,
Addressing)

Optimizable
Protocol

‘ Disciplined Instantiation ‘
]
|

Parameters
(rate, power, ||
modulation
schemes,
frequency, etc.)

Link (FOMA,
CDMA, ARQ)

Physical (bpsk,
gmsk, OFDM, FEC)

‘ Utility and

Penalization
Constraints Parser
¥

Generation
¥

USRP 2

\
\
)
\
\ g SDR Control Host 2 — S
\
\
\
\

USRP 21

Y—{g SDR Control Host 21 —JL.?

Fig. 4: Prototyping diagram of WNOS.

min f(x)
st Alx)<=0
B(x)=0

Optimizer
Library

x_lb<=x <=x_ub
« Interior Point
* Sequential Quadratic

Programming
* Trust-Region-Reflective

Automated Numerical Solution
Algorithm Generation

h
'
0
'
'
0
I
'
'
'
'
'
I
'
'
'
'
'
I
I
i
'
H ‘ Automated Decomposition
'
'
0
I
'
'
'
'
'
'
'
'
I
'
'
I
I
'
0
'
'
0
I
'

i e

techniques). We base our development on Python to take
advantage of its high programming efficiency and high-level
expressiveness and the flexible, open-source programming
interfaces to GNU Radio for controlling USRPs. CogApp
is an open-source software written in Python for template
programming [23], a programming technique based on which
the automated numerical solution algorithm generation has
been implemented in the current prototype.

B. Programmable Protocol Stack

As shown in Fig. 4, the programmable protocol stack (PPS)
is installed on each of the five SDR control hosts, which
are Dell Alienware running Ubuntu 16.04. The PPS has
been developed in Python on top of GNU Radio to provide
seamless controls of USRPs based on WNOS. To this end, a
decision plane has been designed to install those distributed
optimization algorithms generated by the WNOS control host
and then pushed to the SDR control hosts.

The developed PPS covers all the protocol layers. Based on
the protocol stack, a multi-hop wireless ad hoc network testbed
has been established using software-defined radio devices
to verify the effectiveness of the designed wireless network
operating system (WNOS).

The application layer opens end-to-end sessions for transfer-
ring custom data such as files, binary blobs, as well as random
generated data, among others. A session can be established
between any two network entities and multiple sessions can
be established at the same time. Programmable parameters
include the number of sessions and the number of hops in each
session, as well as the desired behavior of each session, e.g.,
maximum/minimum rate, power budget of the nodes, among
others.

The transport layer implements segmentation, flow control,
congestion control as well as addressing. This layer supports
end-to-end, connection-oriented and reliable data transfer. To
accomplish this, a Go-Back-N sliding window protocol is
implemented for flow control and congestion control, and
transport layer acknowledgments are used to estimate the end-
to-end Round Trip Time (RTT), which serves as an estimate
of network congestion. Programmable parameters at this layer
include transmission rate, sliding window size and packet size,
among others.

The network layer implements host addressing and identifi-
cation, as well as packet routing. The network layer is not only
agnostic to data structures at the transport layer, but it also does
not distinguish between operations of the various transport
layer protocols. Routing strategies can be programmed at this
layer.

At datalink layer the core functionalities include fragmen-
tation/defragmentation, encapsulation, network to physical ad-
dress translation, padding, reliable point-to-point frame deliv-
ery, Logical Link Control (LLC) and Medium Access Control
(MAC) among others. In particular, the reliable frame delivery
employs an hybrid LLC’s Stop and Wait ARQ protocol and
Forward Error Correction (FEC) mechanism (Reed-Solomon
coding), such that frames are padded with FEC code and
retransmissions are performed when the link is too noisy.
The FEC is dynamic, reprogrammable, and can automatically

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 10

adapt to the wireless link conditions at fine granularity, by
increasing or decreasing the channel coding rate based on the
observed packet error rate. Programmable parameters at this
layer include channel coding rate, maximum retransmission
times, and target residual link-level packet error rate, among
others.

Finally, the physical layer features both CDMA and
OFDM access schemes, yet with a wide set of modula-
tion schemes supported, including Binary phase-shift keying
(BPSK), Quadrature phase-shift keying (QPSK), Gaussian
Minimum Shift Keying (GMSK) among others. Programmable
parameters at the physical layer include modulation schemes,
transmission power, and receiver gain, among others.

VI. EXPERIMENTAL EVALUATION

We evaluate the effectiveness, flexibility as well as scalabil-
ity of the proposed WNOS by conducting experiments on the
developed WNOS prototype, which is a testbed on large-scale
USRP testbed with 21 nodes. Next, we first demonstrate in
Section VI-A the automated network control problem decom-
position by considering specific network, and then show the
experimental evaluation results in VI-B.

A. Automated Network Control Problem Decomposition

We showcase how WNOS works by taking the network
control problem in [17] as an example. The objective of the
network control problem, referred to as JOCP in [17], is to
maximize the sum utility of a set of concurrent sessions by
jointly optimizing the transmission rate of each session at the
transport layer and controlling the transmission power of each
transmitter at the physical layer. The underlying mathematical
model of the network control problem is given as

maximize Y Ug(xy)
seS

subjectto: Y z;<¢q(P), VleLl (12)
s:l€L(s)
x, P>0

where x £ (z,), with x, representing the transmission rate
of session s € S, P = (P,) is the transmission power profile
of all the involved network nodes, ¢;(P) is the achievable
capacity of link [€ £ on path L(s), and Us(zs) is the
achievable utility of session s. Readers are referred to [17]
for details of the network control problem.

WNOS Representation. Based on the network abstraction
interface provided by WNOS, i.e., WiNAR, network control
problem JOCP can then be defined in a high-level centralized
abstract fashion as shown in Fig. 5, where network utility in
(12) is defined as the sum rate of all sessions, i.e., Us(xs) = x5
for each session s € § in (12). In the high-level definition in
Fig. 5, there are three virtual network elements, i.e., netses,
netlnk and Inkses, representing the set of all sessions, the
set of all links and the set of links used by a session,
respectively. The former two are global elements representing
the set of all sessions & and the set of all links £ in the
network, respectively. The third virtual element Inkses, i.e.,
{s :1 € L(s)} in (12) represents the set of sessions sharing
the same link, and hence is a local element associated with
each link instance of global virtual element netlnk.

Network setting

net = new_ntwk(adhoc)
net.add_node()

net.add_sess()
net.set_protocol(CDMA)
net.set_protocol(TCP_VEGAS)

Define network utility

net.make_var('wos_x', [netses, sesrate], [all, None])
expr = mkexp 'wos_x)
net.set_utlt(expr

Define network COnStraimSUser—defmed network utility
net.make_var('wos_y', [netlnk, Inkses, sesrate], [every, all, None])
net.make_var(‘wos_z', [netInk, Inkcap], [every, None])

cstr = mkexpr(‘'sum(wos_y) <= wos_z‘l 'wos_y', 'wos_z")

net.add_cstr(cstr
_cstr(csT) \‘Networkconstraints

Network control problem decomposition
net.dempf'dua’, ‘dpl Dual-based cross-layer decomposition

Distributed decomposition using DPL

Fig. 5: WNOS definition of network control problem based on
WiNAR.

For instantiation of global virtual elements, the cardinality
of the set of instances is by default set to 20, while it is set
to 10 for local virtual element instantiation. Based on this,
WNOS can generate up to 184756 unique instances for each
abstract network element, which is sufficient to decompose
moderate-size network control problems with up to hundreds
of constraints.

Table I shows the instantiation result of global virtual
element Links in Network and local virtual element
Sessions of Link, where for each link instance a unique
set of sessions sharing the link was constructed based on peer
sampling and hash checking as described in Section IV-B. The
set of links used by a session instance can then be instan-
tiated accordingly, e.g., {0,3,4,7,9,10,11,12,13,14,18,19}
for Session 4 as underlined in Table I.

Problem Decomposition. Consider dual-based cross-layer
decomposition (refer to Section IV-A for the decomposition
theory) as specified in the high-level abstract network control
problem definition in Fig. 5. The resulting dual representation
of the user-defined centralized network control (12) is given
in Fig. 6, where the network constraints of (12) (constraints
component) have been absorbed into the utility function (utility
component), by introducing dual coefficients [bd_id with id
being the index of the link instance to which each dual
coefficient is associated. Our objective is to decompose the
initial user-defined centralized network control problem by
decomposing the corresponding dual representation into a set
of sub-problems each involving a single network element, e.g.,
a single session 4 as shown in Fig. 6.

To this end, the dual representation is further represented
as a three-level tree of sub-expressions, where level O is
the initial dual expression in Fig. 6, level 1 comprises sub-

Utility Component

sesrate_00 + ... +i—s-s-s-;z;{éj(:i?i + sesrate_19

+ Inkcap_00*Ibd_00 + Inkcap_01*Tbd~01 + ... +Inkcap_19*Ibd_19

- sesrate_00*Ibd_09 - sesraleﬁOM’*lbd_%
~sesrate_04*Ibd [09]- sesrate_04*Ibd [11]- sesrate_04*Ibd 1214, Session 4

- sesrate_04*Ibd_[13]- sesrate_04*Ibd_[14]- sesrate_04*Ibd [18] Component
- sesrate_04*Ibd_[19]- sesrate_04*Ibd_[00]- sesrate_04*Ibd_[03]
- sesrate_04*Ibd_[04]— sesrate_04*Ibd [07- sesrate_04*Ibd_[10]
- sesrate_19*lbd_12 - sesrate_19*Ibd_13 - ... - sesrate_19*Ibd_9

) Constraints Component
Fig. 6: Dual function of the instantiated centralized network control

problem.

This paper has been accepted for publication in IEEE/ACM Transactions on Networking

- Data Flow
Interference

Scenarlo 5

Session 2 Session 2 Session 2
Session 1
| I L L
;',I_Sessionl l_ session 1
Scenario 1 Scenario 2 nari
[k
Snapshot of Scenario 2
(@ (b)
Fig. 7: Experimental Scenarios: (a) Scenarios 1-4 and (b) Scenario 5.
25 1.75 16 16
7 ! 1.7 B —— 14
a 2 ; 1es | H gt 12 12 B0-4%
e ‘ 52.2% |56%
3] s, ' > 16 15% 18% > 1 z 1 3%
8151 4 i = 155 z 11% NI = 3[2
= 1 = 4.5% 208 208 %
2 Interference-limited 'Interference E 15 E E 06
S ! free ® 145 a 06 o=
=] 0.4 0.4
Sos 1.4
£ - Session 1 135 0.2 0.2
—Session 2 13 0 0
0 ’ 7 S 4, by S 4y by, 4y, % S
0 1000 1500 2000 h”l'o@ %Os %o\g 00, B Yog, Moy g TGy, Aest Yoy, Mg, Moy TGy, et
Time (s) Ve 2 TR oy Oo X KAl o, 00/,&e K ”0/ 00/;
(@) (b) © (@

Fig. 8: (a) End-to-end throughputs of sessions 1 and 2; Average sum utility of scenarios (b) 1, (c) 2 and (d) 3.

expressions of sum operation in the initial representation,
while each expression at level 1 can be further represented
as a multiplication of two sub-expressions at level 2. Then, to
decompose the user-defined central network control problem,
we only need to walk over all level-1 elements of the tree and
determine to which subproblem each of the elements should
be categorized. For cross-layer decomposition, this can be
accomplished as follows:

o For each level-1 sub-expression, extract the protocol layer
information of the network element involved in the sub-
expression using Read operations defined in Section III.

o Categorize the sub-expression into the sub-problem of the
corresponding protocol layer.

The decomposition will result in a set of subproblems each
involving only a single protocol layer. Similarly, each of the
resulting sub-problems can be further decomposed into sub-
problems each involving a single network element, e.g., node,
session, so that they can be solved in a distributed fashion and
result in distributed control actions.

Mapping From Instantiation to Abstract Domain: Recall in
Section IV-B that our objective is to construct a set of instan-
tiations of the user-defined high-level abstract network control
so that decomposing any of the problem instantiations de-
composes the abstract problem. As described in Section IV-B,
this is guaranteed by the one-to-one mapping between virtual
network elements and their instantiations obtained through
peer-sampling and hash checking. Next, we show the one-to-
one mapping taking the following instantiated transport-layer
subproblem as an example:

sesrate_04 — sesrate_04 x (1bd_09 + lbd_11

+1bd_12 + 1bd_13 + lbd_14 + 1bd_18 + lbd_19

+1bd_00 + {bd_03 + 1bd_04 + 1bd_07 + lbd_10).
We can see that (13) is the subproblem by categorizing those
Session 4 components in Fig 5. In (13), dual coefficients [bd
are parameters that will be received by the source node of

13)

session 4 from links with indexes {09, 11, 12, 13, 14, 18,
19, 00, 03, 04, 07, 10}, which is namely the instantiation set
for local virtual element Links of Session for Session 4, as
shown in Table I. Hence, (13) can be further represented for
all sessions, which corresponds to the global virtual network
element Sessions of Network,

sesrate — sesrate x sum(lbd) (14)
where lbd represents the vector of dual parameters received

by each source node of the session at network run time.

B. Software-defined Radio Implementation

We test WNOS on the designed SDR testbed in five different
networking scenarios. As shown in Fig. 7, Scenarios 1-3
deploy six nodes and two traffic sessions; while Scenario
4 considers nine nodes and three traffic sessions, with each
session spanning over two hops. In Scenario 5, three sessions
are deployed over 21 nodes, with six hops for each session.
Six spectrum bands in the ISM bands are shared by the 21
USRPs, with bandwidth of 200 kHz for each spectrum band.
At each USRP, the data bits are first modulated using GMSK
and then sampled at sampling rate of configured 800 kHz.
Reed-solomon (RS) code is used for forward error coding
(FEC) with coding rate ranging from 0.1 to 0.4 at a step of
0.1. In Fig. 7(a) the data flow is indicated using solid arrows,
and the interference is indicated using dashed arrows. There
is interference only when two nodes share the same spectrum
band. The code to repeat experiments is available on website:
http://www.ece.neu.edu/wineslab/WNOS.php.

Through the experiments, we seek to demonstrate the fol-
lowing properties:

o Effectiveness. Through experiments in Scenarios 1-3, we
show that WNOS-based network optimization outper-
forms non-optimal or purely locally optimal (greedy)
network control;

This paper has been accepted for publication in IEEE/ACM Transactions on Networking

N
al

e s e

—6-Power Minimization
-2 Sum-log-rate Maximization|

-Power Minimization
—8 Sum-| Iog rate Maximization|

-+ Control Program 1: Session 1
— Control Program 1: Session 2
===+ Control Program 2: Session 1
j=—Control Program 2: Session 2
=+ Control Program 3: Session 1
|—Control Program 3: Session 2

100 150 200 250
Time (s)

N
n
o

=
o

50

o

w
=
o

Throughput (packets/s)
o

N

ontrol Program 2: Session 1
Control Program 2: Session 2
—= Control Program 2: Session 3
===+ Control Program 4: Session 1
|—Control Program 4: Session 2
|== Control Program 4: Session 3

Average Transmission Power (dBm)
w

N
o

laln}

Average Throughput (packets/s)

100 200 8

Time (s)

(a)

300 400

10
Node Index
(b)

Fig. 9: (a) Network behaviors with different control programs; (b) Transmission power and

12 14 16 18

o [
o (5] - (5] N
e

2
Expenment Index

(©

(c) throughput resulting from two different

o

control objectives: sum-log-rate maximization and power minimization.

15

20
[~e-Session 1 Instantaneous
Session 2 18
Finished

—+—Session 2: Instantaneous

.
5

| == Session 1: Running Average|

|—Session 2: Running Average]

[
5 K &

Transmission Power (dBm)
Throughput (packets/s)

—=-Session 1
——Session 2

| /\
7
:l'
7
5
{
f

0

o N & o ®

|
| Session 2
! Finished

Transmission Power (d8m)

o 50 100 150 200 250 300 350 400 450
Time (s)

(@)

°
1
8

Time (s)

(b)

0 50 100

Time (s)

(©)

Time (s)

(d

Fig. 10: Instance of (a) transmission power (source node) and (b) throughput resulting from power minimization; Instance of (c) transmission
power (source node) and (d) throughput resulting from sum-log-rate maximization.

e Flexibility. Through experiments in Scenarios 4 and 5,
we showcase the flexibility of WNOS in modifying the
global network behavior by changing control objectives
and constraints.

e Scalability. In Scenario 5 we show the scalability of
WNOS by deploying code over a large-scale network.

Effectiveness. We show the effectiveness of WNOS on the
developed SDR testbed. At the physical layer, two spectrum
bands are used, 1.3 GHz and 2.0 GHz. If two transmitters
(either source or relay) are tuned to the same spectrum band,
their transmissions will interfere as shown in Fig. 7(a). The
control objective is to maximize the sum utility of the two
sessions (referred to as Control Program 1, which can be
specified by expr = mkexpr(‘sum(log(wos_x))’, ‘wos_x’) as
in (12)) by jointly controlling the transmission rate at the
transport layer and the transmission power at the physical
layer. For each session, the utility is defined as the logarithm
of the achievable end-to-end throughput, and considers only
those successfully delivered packets.

Five schemes have been tested: (i) WNOS-T-P: transport
and physical layers are jointly controlled using the opti-
mization algorithms automatically generated by WNOS; (ii)
WNOS-T: only the transport layer rate is controlled by WNOS;
(iii)) WNOS-P: only the physical layer power is controlled by
WNOS; (iv) No Control: neither transport or physical layer
are controlled by WNOS, and the rate and power are selected
randomly; and (v) Best Response: maximum rate and power
are used at the transport and physical layers, respectively. In
all schemes, the initial operating points (i.e., rate and power)
are randomly generated. Power control is implemented by

controlling the transmit gain (which takes value from 0 to
30 dB) of the FPGA of USRP N210s.

We first validate WNOS in an environment with tight cou-
pling of different sessions via interference. Fig. 8(a) reports the
achievable end-to-end throughput vs time for the two sessions
(in terms of packets/s) in network scenario 2. The packet
length is set to 2048bits. We observe that the throughput of the
two sessions converges to 1.6 and 2.3packets/s when they are
active simultaneously, i.e., in the interference-limited region
in Fig. 8(a). After session 2 is done transmitting all of its
packets (3000 packets), session 1 operates in the interference-
free region and its throughput starts to increase significantly.

The average performance of the five schemes is reported
in Figs. 8(b), (c) and (d) for network scenarios 1, 2 and 3,
respectively. As discussed above, the three network scenarios
have been designed to present different levels of interference
between the two sessions. The sum utility achievable by the
best response scheme is a good indicator since with this
scheme each node always transmits at the maximum power,
i.e., 30 dB transmit gain is used for USRP N210. For example,
with the least amount of interference in scenario 1, best
response achieves the highest sum utility of 1.44 compared
to 0.89 in network scenario 3. From the three figures, it
can be seen that, compared with no control, considerable
performance gain can be achieved by the WNOS-T-P, i.e., with
transport and physical layers jointly controlled, and this gain
increases as the interference level increases. Once more, we
would like to emphasize that this is obtained by writing only
a few lines of high level code on a centralized abstraction;
while the behavior is obtained through automatically generated

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 13

| Session 1 ‘ | Session 2 |

s [E 7 [E 1] =

E) 2 £ s 10 14 EWEH E21 23

B Es Ee E13 E =l [E
(a)

-) Max-log rate

—session 1 |nstantaneous
~session 2 instantaneous

== session 1 average

== session 2 average

Thoughput [pkt/s]

Mln -power

—session 1 |nstantaneous
--session 2 instantaneous
== session 1 average

=—Session 2 average

Throughput [pkt/s]

0 4= L
0 10 40 60

20 30 50 70
Time [s]
(b)

Fig. 11: Experimental evaluation of WNOS Instantiation on ARENA. (a) WNOS deployment on ARENA; (b) Experimental Results.

distributed control programs. Specifically, up to 80.4% utility
gain can be achieved in network scenario 3, which has the
highest interference. In the case of no cross-layer control, i.e.,
only one protocol layer is optimized, WNOS still achieves
significant utility gain, which varies from 4.5% to 52.2% in
the tested instances.

Modifying Network Behavior. In the following experi-
ments, we showcase WNOS’s capability of modifying the
global network behavior by changing a few lines of code. To
achieve different desired network behaviors, one only needs to
change the centralized and abstract control objective or modify
the constraints while WNOS generates the corresponding
distributed control programs automatically. For example, if
the control objective is to maximize the sum throughput (i.e.,
maximize »_ x) of all sessions instead of sum log throughput
(i.e., maximize Y log(z)) as in Control Problem 1 (Control
Program 2), this can be accomplished by rewriting one line
of code only: expr = mkexpr(’sum(wos_x)’, 'wos_x’). As
shown in Fig. 9 (a, top), compared with Control Program 1
(i.e., maximizing sum-log-throughput), Control Program 2
obtains higher sum throughput (4.92 vs 4.66 in packets/s)
by increasing the throughput of session 1 while decreasing
the throughput of session 2, in this way, as expected, trading
throughput for fairness. This is because it is easier for session
1 (see scenario 1 in Fig. 7) to achieve higher throughput than
session 2 since session 1 has shorter links.

Furthermore, if the network user needs to limit the maxi-
mum transmit power of the first session (Control Program 3),
this can be accomplished simply by defining a new constraint
using the following two lines of code:

nt.make_var(’wos_z’, [ntses, seslnk, lkpwr], [1, all, None])

nt.add_cstr(’'wos_z < 5’, 'wos_z’)
where the first line of code defines link power as a variable
while the second line specifies the upper bound constraint. The
resulting session behaviors are shown in Fig. 9 (a, top), where
the throughput of session 1 has been effectively bounded. In
another example, three sessions are deployed as in scenario
4 in Fig. 7. The normalized transmission power of sessions
2 and 3 are programmed to be smaller than 6 and greater
than 20, respectively (Control Program 4). It can be seen in
Fig. 9 (a, bottom) that, compared with Control Program 2, the

throughput of sessions 2 and 3 can be successfully changed
with the new control program. As shown above, all this needs
only two new lines of code to characterize the behavior of
session 3.

Flexibility and Scalability. We further test the flexibility
and scalability of WNOS in changing control programs on a
large-scale SDR testbed of 21 USRPs (i.e., Scenario 5) and by
considering two sharply different network control objectives: 1)
sum-log-rate maximization and ii) power minimization under
minimum rate constraints. Again, changing the network con-
trol behaviors based on WNOS requires modifying a couple
of lines of code only. The WiNAR code for defining the power
minimization control objective is as follows:

nt.make_var(‘wos_x’, [ntlk, lkpwr], [all, None]);

expr = mkexpr(‘sum(wos_x)’, ‘wos_x’),
where the first line states the transmission power of all the
active links in the network as control variables, while the
second line defines the sum of the transmission power as the
utility function to be minimized.

The measured average transmission power of the source
and intermediate nodes are plotted in Fig. 9(b), while the
achievable throughput is reported in Fig. 9(c). Unsurprisingly,
the two control objectives result in different network behav-
iors. With power minimization, the three sessions achieved
approximately the target throughput (packets/s) with much
lower average power than sum-log-rate maximization; while
the latter achieves higher throughput at the cost of higher
power consumption.

Figure 10 provides a closer look at the contrasting net-
work behaviors resulting from the two control objectives,
respectively, by plotting the interactions between sessions 1
and 2 in terms of transmission power and the corresponding
instantaneous throughputs. It can be seen from Fig. 10(b)
that session 2’s running average throughput decreases to zero
during 20 — 200s because of low SINR. In response, as
shown in Fig. 10(a), session 2 increases its transmission
power while session 1 decreases until session 2 recovers at
around 200s. After session 2 is finished, session 1 keeps its
current transmission power, which is sufficient to achieve the
target throughput. Very differently, in the case of sum-log-rate
maximization, after session 2 is done, session 1 increases its

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 14

transmission power to maximize the throughput, as shown in
Figs. 10(c) and (d).

Finally, we further verify the flexibility of WNOS by imple-
menting a 14-node WNOS prototype on a new experimentation
platform called Arena. Arena is a wireless testing platform at
Northeastern University based on a grid of antennas mounted
on the ceiling of a large office-space environment. As shown
in Fig. 11(a), in this experiment two source nodes intend to
deliver data to two destinations through 12 relay nodes, in a
wireless multi-hop fashion. As source, relay, and destination
nodes, we use SDRs 3-11, SDRs 1-2-5-6-7-9-10-13-14-15, and
SDRs 8-16, respectively. We employ WNOS to dictate two
different network behaviors, namely max-rate and min-power.
The network performance for the two traffic sessions under the
two different control problems is shown in Fig. 11(b). It can
be seen that different network behaviors have been achieved
on the new experimentation platform, by defining the network
behaviors with WNOS by modifying only several lines of
the code. This further verifies the flexibility and scalability
of WNOS.

VII. LIMITATIONS AND FUTURE WORK

We believe that our work on WNOS provides the first proof
of concept of the ability to create a principled optimization-
based wireless network operating system, where the desired
global network behavior is defined on a centralized high-level
abstraction of the network and obtained through automati-
cally generated distributed cross-layer control programs. We
acknowledge several limitations, which will be addressed in
future work.

First, WNOS generates cross-layer distributed control pro-
grams by decomposing high-level defined network control
objective problems, and hence users don’t have to deal with
tedious details of lower-layer protocols and distributed opti-
mization theory. The decomposition requires the WNOS to

TABLE I: Instantiation of virtual element Sessions of Link, i.e.,
lkses in Fig. 5, s : I € L(s) in (12). The set of all links is initiated
to {1,---,19}. Underlined links are links used by session 4.

Link Session Instances

e
'L;),

b
[=]5
— o =

5)0

, 14, 15, 16, 17, 18, 19
,7,8,12, 15,17, 18
3, 14, 15, 16, 17, 18, 19

4

5

(]
(=)}

0 3[4)67,8 14,1517, 18,19
10,2368 10,11, 12, 16, 17
20,567 11,13, 14, 15, 18, 19
3 0,1[4]6 10, 11,13, 16,17, 19
4 0,3,[4]7.81213,14,18,19
5 1,3,6 10,11, 12,13, 15, 18, 19
6 0,1,3,567 11, 14,15, 16

7 1,3,[4]6 12, 14,15, 16, 17, 19
8 1,256,789 10,12, 14

9 0,2,3[4]5 12,1315, 16,17
10 0,1,[4]673809 11,1619
1

12

13

14 0,1,3,[4]568 1216 17

15 2,3,6,10, 11, 12, 13, 15, 16, 19
16 1,2,3,56,809, 12,15, 16

17 1,2,7,8,12, 13, 14, 16, 18, 19
18 0,1,3,[4] 67, 12,13, 18, 19
19 0,2,[4]5812,14,15 16,17

specify mathematical models for network protocols at all
layers. We are working to standardize the interface of WNOS
and plan to make the source code of WNOS available so
that new protocols and mathematical models can be easily
incorporated into the existing programmable protocol stack
(PPS). While the current version of the PPS is designed for
software defined radios, we also plan to develop versions
of the PPS designed to operate on legacy wireless interface
cards (e.g., WiFi). Last, we also plan to extend WNOS to
build mathematical models for user-defined network control
problems by online learning and automated modeling [24].

Second, network protocols at different layers operate at
different time scales, which can be up to orders-of-magnitude
different. In the current WNOS implementation, static time
scales have been considered, e.g., 30 times larger for transport-
layer rate adaptation than physical-layer power control in the
testbed evaluation in Section VI. In the future, we will work
to let WNOS determine time scales automatically for different
protocols based on the user-defined high-level network control
objective, including convergence and delay requirements, net-
work size, as well as the underlying transmission medium.

Third, given user-defined high-level network control prob-
lems, mathematical optimization problems are constructed and
then decomposed by WNOS. Currently, WNOS considers
dual decomposition and decomposition by partial lineariza-
tion (DPL) for cross-layer and distributed decompositions,
respectively. We plan to incorporate other optimization and
decomposition approaches in the future generation of WNOS,
such as primal decomposition, hybrid dual and primal de-
compositions [25], parallel and distributed successive con-
vex approximation [26], distributed stochastic optimization
[27], distributed optimization and statistical learning [28].
Additionally, WNOS in its current version considers devices
cooperating within a network utility maximization framework,
and in future work non-cooperative devices will be modeled
in WNOS through non-cooperative game theory notions [29].

Finally, the objective of WNOS is to generate distributed
cross-layer optimized network control programs in an auto-
mated way based on available optimization and decomposition
theories. A promising research direction is to evaluate the
optimality of the resulting programs by comparing them with
those methods hand-designed for specific network control
problems through extensive testbed experiments.

VIII. RELATED WORK

Software-defined networking has shown great potential to
enhance the performance of wireless access networks, e.g.,
improving network resource utilization efficiency, simplifying
network management, reducing operating costs, and promot-
ing innovation and evolution [4], [5], [6], [30]. For exam-
ple, in [4] Bansal et al. proposed OpenRadio, which pro-
vides a programmable wireless network data plane to enable
users/controllers to upgrade and optimize the network in
a software-defined fashion. Gudipati et al. presented Soft-
RAN [5] to redesign the radio access layer of LTE cellular
networks. In [6], Li et al. presented CellSDN to simplify the
design and management of wireless cellular networks while

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 15

enabling new applications. Chen et al. propose a software-
defined networking based flow scheduling system for inte-
grated LTE-WiFi network. Readers are referred to [31], [32],
[33] and references therein for excellent surveys of this field.

Compared to SDN-based cellular networks, enabling SDN
in distributed wireless networks, e.g., multi-hop ad hoc net-
works and vehicular networks, is significantly more challeng-
ing because of the absence of a centralized control entity.
Research efforts in this field include [3], [34], [35], [36],
[371, [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50]. For example, in [3] the authors propose new
software-defined network architecture that can eliminate the
need of multi-hop flooding for route discovery in large scale
wireless distributed networks (WDNs). In [34], Zhu et al.
proposed an SDN-based routing scheme for Vehicular Ad
Hoc Network (VANET) where a central controller collects
network information from switches and computes the optimal
routing strategies. Palazzo et al. propose SDN-WISE [35],
[37] to provide a stateful programmable protocol stack for
wireless sensor networks (WSNs). Cheng et al. focus on
distributed control plane in software-defined networks [41]
and study how to migrate switches to achieve a balanced
control plane. In [42], the authors propose LayBack, a unifying
Software Defined Network (SDN) orchestrator for sharing
backhaul network resources across different operators and
wireless platforms. The authors of [49] propose a Levenberg-
Marquardt algorithm for traffic load minimization in software
defined wireless sensor networks. Please refer to [51], [52] and
references therein for a good survey of the main results this
field. Different from these existing work, where the network
control algorithms and protocols are still hand-designed, our
objective is to study the basic principles for designing WNOS,
an optimization-based wireless network operating system with
automated generation of distributed and cross-layer optimized
network control programs.

IX. CONCLUSIONS

We discussed the basic building principles of the Wireless
Network Operating System (WNOS). WNOS provides network
designers with an abstraction hiding the lower-level details of
the network operations. Based on this abstract representation,
WNOS takes centralized network control programs written on
a centralized, high-level view of the network and automatically
generates distributed cross-layer control programs based on
distributed optimization theory that are executed by each
individual node on an abstract representation of the radio
hardware. We presented the design architecture of WNOS,
discussed the techniques to enable automated decomposition
of user-defined centralized network control problems. We
have also prototyped WNOS and evaluated its effectiveness
using testbed results. Future research directions will include
automated modeling, multi-timescale control, incorporating
heterogeneous decomposition approaches, and thorough exper-
imental comparison between automatically generated network
control programs and those hand-engineered ones.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

REFERENCES

Z. Guan, L. Bertizzolo, E. Demirors, and T. Melodia, “WNOS: An
Optimization-based Wireless Network Operating System,” in Proc. of
ACM MobiHoc, Los Angeles, USA, June 2018.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, March 2008.

M. Abolhasan, J. Lipman, W. Ni, and B. Hagelstein, “Software-Defined
Wireless Networking: Centralized, Distributed, or Hybrid?” IEEE Net-
work, vol. 29, no. 4, pp. 32-38, July/August 2015.

M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: A Pro-
grammable Wireless Dataplane,” in Proc. of HotSDN, Helsinki, Finland,
August 2012.

A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
Defined Radio Access Network,” in Proc. of HotSDN, Hong Kong,
China, August 2013.

L. E. Li, Z. M. Mao, and J. Rexford, “CellSDN: Software-
Defined Cellular Networks,” Technical Report, 2012. Online Available.
ftp://ftp.cs.princeton.edu/techreports/2012/922.pdf.

Z. Guan, T. Melodia, D. Yuan, and D. Pados, “Distributed Resource
Management for Cognitive Ad Hoc Networks with Cooperative Relays,”
IEEE/ACM Trans. on Netw., vol. 24, no. 3, pp. 1675-1689, June 2016.
M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as Optimization Decomposition: A Mathematical Theory of Network
Architectures,” Proc. of IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.
G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, “De-
composition by Partial Linearization: Parallel Optimization of Multiuser
Systems,” IEEE Trans. on Signal Process., vol. 63, no. 3, pp. 641-656,
Feb. 2014.

R. Gupta, L. Vandenberghe, and M. Gerla, “Centralized Network Utility
Maximization over Aggregate Flows,” in Proc. of International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), Tempe, AZ, USA, May 2016.

N. Karakog, A. Scaglione, and A. Nedi¢, “Multi-layer Decomposition
of Optimal Resource Sharing Problems,” in Proc. of IEEE Conference
on Decision and Control (CDC), Miami Beach, FL, USA, Dec. 2018.
M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: A Pro-
grammable Wireless Dataplane,” in Proc. of HotSDN, Helsinki, Finland,
August 2012.

I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC Processors: Programming MAC Protocols
on Commodity Hardware,” in Proc. of IEEE INFOCOM, Orlando, FL,
March 2012.

C. Liang and F. R. Yu, “Wireless Network Virtualization: A Survey,
Some Research Issues and Challenges,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 1, pp. 358-380, Frist Quarter 2015.

V. K. Balakrishnan, Graph Theory. USA: McGraw-Hill, 1997.

S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge
University Press, March 2004.

M. Chiang, “Balancing Transport and Physical Layers in Wireless
Multihop Networks: Jointly Optimal Congestion Control and Power
Control,” IEEE JSAC, vol. 23, no. 1, pp. 104-116, January 2005.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. USA: Athena Scientific, 1997.

B. Johansson, P. Soldati, and M. Johansson, ‘“Mathematical Decom-
position Techniques for Distributed Cross-Layer Optimization of Data
Networks,” IEEE JSAC, vol. 24, no. 8, pp. 1535-1547, August 2006.
N. Karakog, A. Scaglione, A. Nedi¢, and M. Reisslein, “Multi-Layer
Decomposition of Network Utility Maximization Problems,” IEEE/ACM
Transactions on Networking, vol. 28, no. 5, pp. 2077-2091, December
2020.

N. Karako¢ and A. Scaglione, “Federated Network Utility Maximiza-
tion,” in Proc. of IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PerCom Workshops), Austin, TX,
USA, March 2020.

J. L. Carter and M. N. Wegman, “Universal Classes of Hash Func-
tions,” in Proc. of ACM Symposium on Theory of Computing, Boulder,
Colorado, May 1977.

https://pypi.python.org/pypi/cogapp.

A. C. Capelo, L. Ironi, and S. Tentoni, “Automated Mathematical
Modeling from Experimental Data: An Application to Material Science,”
IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and
Reviews, vol. 28, no. 3, pp. 356-370, Aug. 1998.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[47]

This paper has been accepted for publication in IEEE/ACM Transactions on Networking 16

D. P. Palomar and M. Chiang, “A Tutorial on Decomposition Methods
for Network Utility Maximization,” IEEE JSAC, vol. 24, no. 8, pp. 1439—
1451, August 2006.

G. Scutari and Y. Sun, Parallel and Distributed Successive Convex
Approximation Methods for Big-Data Optimization. Lecture Notes in
Mathematics, C.I.M.E, Springer Verlag series, Jan. 2018.

S. A. Alghunaim and A. H. Sayed, “Distributed Coupled Multi-Agent
Stochastic Optimization,” [EEE Transactions on Automatic Control,
accepted for publication, March 2019.

S. Boyd, N. Parikh, E. Chu, B. Peleto, and J. Eckstein, Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Boston, USA: NOW Publishers Inc., 2010.

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory
(Classics in Applied Mathematics). USA: Society for Industrial and
Applied Mathematics, 1999.

K. Chen, J. Liu, J. Martin, K.-C. Wang, and H. Hu, “Improving
Integrated LTE-WiFi Network Performance with SDN Based Flow
Scheduling,” in Proc. of International Conference on Computer Com-
munication and Networks (ICCCN), Hangzhou, China, July 2018.

I. T. Haque and N. Abu-Ghazaleh, “Wireless Software Defined Net-
working: A Survey and Taxonomy,” IEEE Communications Surveys &
Tutorial, vol. 18, no. 4, pp. 2713-2737, Fourth Quarter 2016.

K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking
Opportunities and Challenges for Internet-of-Things: A Review,” I[EEE
Internet of Things Journal, vol. 3, no. 4, pp. 453—463, Aug. 2016.

R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN Networks: A Survey
of Existing Approaches,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3259-3306, Fourthquarter 2018.

M. Zhu, J. Cao, D. Pang, Z. He, and M. Xu, “SDN-Based Routing
for Efficient Message Propagation in VANET,” in Wireless Algorithms,
Systems, and Applications, K. Xu and H. Zhu, Eds. New York City,
USA: Springer International Publishing, 2015, pp. 788-797.

L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
Wilreless SEnsor networks,” in Proc. IEEE INFOCOM, Hong Kong,
April 2015.

M. Algallaf and B. Wang, “Software Defined Collaborative Secure Ad
Hoc Wireless Networks,” in Proc. of CTS, Atlanta, GA, June 2015.

P. D. Dio, S. Faraci, L. Galluccio, and S. Milardo, “Exploiting State
Information to Support QoS in Software-Defined WSNs,” in Proc. of
Med-Hoc-Net, Vilanova i la Geltru, Spain, June 2016.

T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, S. Guo,
T. Tsukahara, and T. Hayashi, “A Software Defined Wireless Sensor
Network,” in Proc. of ICNC, Honolulu, HI, USA, Feb. 2014.

B. Mao, F. Tang, Z. M. Fadlullah, and N. Kato, “An Intelligent Route
Computation Approach Based on Real-Time Deep Learning Strategy
for Software Defined Communication Systems,” IEEE Transactions on
Emerging Topics in Computing, accepted for publication, Feb. 2019.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[48]

[49]

[50]

(51]

[52]

D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy
Minimization in Multi-Task Software-Defined Sensor Networks,” IEEE
Trans. on Computers, vol. 64, no. 11, pp. 3128-3139, Nov. 2015.

S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central Control
Over Distributed Routing,” in Proc. of ACM SIGCOMM, London, United
Kingdom, Aug. 2015.

G. Cheng, H. Chen, Z. Wang, and S. Chen, “DHA: Distributed Decisions
on the Switch Migration Toward a Scalable SDN Control Plane,” in Proc.
of IFIP Networking Conference (IFIP Networking), Toulouse, France,
May 2015.

L. Ferrari, N. Karakoc, A. Scaglione, M. Reisslein, and A. Thyagaturu,
“Layered Cooperative Resource Sharing at a Wireless SDN Backhaul,”
in Proc. of IEEE International Conference on Communications Work-
shops (ICC Workshops), Kansas City, MO, USA, May 2018.

H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-
Based Distributed Control System for Software-Defined Wireless Sensor
Networks,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp- 901-910, Feb. 2019.

K. Sudheera, K. Liyanage, M. Ma, and P. H. J. Chong, “Controller
Placement Optimization in Hierarchical Distributed Software Defined
Vehicular Networks,” Elsevier Journal of Computer Networks, vol. 135,
pp- 226-239, April 2018.

G. Li, S. Guo, Y. Yang, and Y. Yang, “Traffic Load Minimization in
Software Defined Wireless Sensor Networks,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1370-1378, June 2018.

A.-C. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo,
“SD-WISE: A Software-Defined Wlreless SEnsor network,” Elsevier
Journal of Computer Networks, vol. 159, pp. 84-95, August 2019.

C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, “Deep Q-Learning Aided
Networking, Caching, and Computing Resources Allocation in Software-
Defined Satellite-Terrestrial Networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 6, pp. 5871-5883, June 2019.

M. Chen and Y. Hao, “Task Offloading for Mobile Edge Computing
in Software Defined Ultra-Dense Network,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 3, pp. 587-597, March 2018.
X. Huang, R. Yu, J. Kang, Z. Xia, and Y. Zhang, “Software Defined
Networking for Energy Harvesting Internet of Things,” Software Defined
Networking for Energy Harvesting Internet of Things, vol. 5, no. 3, pp.
1389-1399, June 2018.

M. A. Hassan, Q.-T. Vien, and M. Aiash, “Software Defined Network-
ing for Wireless Sensor Networks: A Survey,” Advances in Wireless
Communications and Networks, vol. 3, no. 2, pp. 10-22, May 2017.

F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:
Survey, Taxonomy, and Challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 333-354, Frist Quarter 2018.

